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Conventional research in targeted delivery of molecules-of-interest involves either 

packaging of the molecules-of-interest within a delivery mechanism or pre-synthesis of 

an inactive prodrug that is converted to the molecule-of-interest in the vicinity of the 

targeted area.  Biological nanofactories provide an alternative approach to targeted 

delivery by locally synthesizing and delivering the molecules-of-interest at surface of the 

targeted cells.  The machinery for synthesis and delivery is derived from the targeted 

cells themselves.  Biological nanofactories are nano-dimensioned and are comprised of 

multiple functional modules.  At the most basic level, a biological nanofactory consists of 

a cell targeting module and a synthesis module.  When deployed, a biological 

nanofactory binds to the targeted cell surface and locally synthesizes and delivers 

molecules-of-interest thus altering the response of the targeted cells.   

In this dissertation, biological nanofactories for the localized synthesis and 

delivery of the ‘universal’ quorum sensing signaling molecule autoinducer-2 are 

demonstrated.  Quorum sensing is process by which bacterial co-ordinate their activities 

at a population level through the production, release, sensing and uptake of signaling 
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autoinducers and plays a role in diverse bacterial phenomena such as bacterial 

pathogenicity, biofilm formation and bioluminescence.  Two types of biological 

nanofactories; magnetic nanofactories and antibody nanofactories are presented in this 

dissertation as demonstrations of the biological nanofactory approach to targeted 

delivery.  Magnetic nanofactories consist of the AI-2 biosynthesis enzymes attached to 

functionalized chitosan-mag nanoparticles.  Assembly of these nanofactories involves 

synthesis of the chitosan-mag nanoparticles and subsequent assembly of the AI-2 

pathway enzymes onto the particles.  Antibody nanofactories consist of the AI-2 

biosynthesis enzymes self assembled onto the targeting antibody.  Assembly of these 

nanofactories involves creation of a fusion protein that attaches to the targeting antibody.  

When added to cultures of quorum sensing bacteria, the nanofactories bind to the surface 

of the targeted cells via the targeting module and locally synthesize and deliver AI-2 

there via the synthesis module.  The cells sense and uptake the AI-2 and alter their natural 

response.  Prospects of using biological nanofactories to alter the native response of 

targeted cells to a ‘desired’ state, especially with respect to down-regulating undesirable 

co-ordinated bacterial response, are envisioned. 
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Chapter 1: Introduction to Biological Nanofactories 

1.1 Targeted Delivery 

Targeted delivery has been employed and is currently being studied in a diverse range of 

biological applications.  There is a large body of peer-reviewed literature available on the 

subject: a search conducted using the words ‘targeted delivery’ in the database Pubmed 

(www.pubmed.gov) returns 7138 hits as of October 2008.  Targeted delivery has been 

investigated in a variety of therapies such as treatment of HIV 1, 2, cancer 3, 4, diabetes 5, 6, 

pulmonary diseases 7, 8, endothelial diseases 9, 10, to name a few, and in applications such 

as gene delivery 11, 12, imaging 13, 14 etc.  Selective targeting is effected using wide 

ranging delivery mechanisms such as quantum dots 15, 16, viral vectors 17, 18, nanoparticles 

19, 20 and nanotubes 21, 22, liposomes 23, 24, polymeric systems 25, 26 etc.  The rationale 

behind using targeted delivery is to facilitate or increase the effect of the delivered cargo 

to the targeted area (cells, vasculature, tissues or organs) and to reduce unwanted and 

non-specific effects of it in the surrounding area.  The ultimate goal of all these 

applications is to alter the response in the targeted area to a ‘desired state’ which is 

different from the ‘original state’.  

 There are two main approaches to targeted delivery.  In the first approach, the 

molecule-of-interest which could be a synthetic molecule 27, 28, a growth factor 29, 30, a 

signal molecule 31, 32 etc is synthesized, packaged within a delivery mechanism and then 

delivered to the targeted area thus altering the response there.  Recent examples of the 

same in literature include delivery of therapeutic agents to cancer cells 19, 33 and delivery 

of genes 12, 34 to targeted cells.  The second approach involves using prodrugs.  Prodrugs 
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are inactive or significantly less active molecules which are first synthesized, 

administered to the target area and then activated or converted to an active state there.  

Prodrugs have been used to in applications such as cancer therapy 35, 36, ocular therapy 37, 

38, Parkinson’s disease therapy 39, 40 and overcoming bacterial resistance 41, 42.   

 In this dissertation, a third and fundamentally different approach to creating an 

altered response within the targeted area is presented.  It involves taking cues from the 

targeted area (for e.g. cells, tissue etc) itself to modulate or alter response in the targeted 

area.  Specifically, an intrinsic synthesis pathway that produces the molecule-of- interest 

within the targeted area is taken and reconstructed in vitro.  The reconstructed pathway is 

then locally delivered to the target cells using delivery mechanisms that will be covered 

later.  The pathway locally synthesizes and delivers the molecule-of-interest in the 

targeted area.  The interaction of the molecule-of-interest with the targeted area produces 

an altered response.  This approach differs from the previous two approaches in that the 

native machinery from the target area itself is utilized to confer an altered response in the 

targeted area.  Figure 1-1 compares the three approaches.  This novel generic approach to 

targeted delivery is applied in the field of bacterial communication.  The motivation for 

undertaking this work, global hypothesis, specific aims and outlines of the studies 

conducted are described in the subsequent sections of this chapter. 

 

Figure 1-1.  Different approaches to targeted delivery.  a. Packaging the molecule-of-

interest within a delivery mechanism.  The delivery mechanism releases the molecule in 

the vicinity of the target area.  b. Presynthesis and delivery of a prodrug that is activated 

in the targeted area.  c. In vitro reconstruction of a synthesis pathway that is delivered to 

the target area where it locally synthesizes and delivers the molecule-of-interest. 
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1.2 Bacterial Communication 

Bacteria have long been regarded as independent unicellular organisms.  However 

bacteria cannot be viewed as isolated entities as they are capable of coordinating their 

activities and producing a multi-cellular response.  The phenomenon whereby bacteria 

exchange small chemical molecules, monitor their population density and co-ordinate 

gene expression in a population dependent manner is termed as quorum sensing (QS) 43.  

Bacterial communication occurs within a species (intra-species), with other species 

(inter-species) as well as with other organisms (inter-kingdom) 44, 45.  Examples of intra-

species bacterial communication include single species bacterial infections such as 

cholera (caused by Vibrio cholerae) 46, 47 and chronic lung infections in cystic fibrosis 

(caused by Pseudomonas aeruginosa) 48, 49.  Inter-species bacterial communication has 

been observed between the numerous species of bacteria in the gut 50, 51 and in oral flora 

52.  Inter-kingdom bacterial communication includes interactions of bacteria of the genus 

Rhizobium 53 with leguminous roots of plants for nitrogen fixing and interactions between 

marine bacteria of the genus Vibrio and marine squids resulting in bioluminescence 54, 55. 

 Previously bacteria were thought to communicate through two distinct classes of 

molecules: acylated homoserine lactones used by Gram-negative bacteria and 

oligopeptides used by Gram-positive bacteria.  However bacterial communication is not 

limited to these two classes of molecules and is observed to occur through other signaling 

molecules such as autoinducer-2 (AI-2), pseudomonas quinolone signal (PQS) and 

bradyoxetin and other molecules to a lesser extent 44.  Figure 1-2 shows the major classes 

of signaling (QS) molecules. 
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Figure 1-2.  Chemical structures of the various classes of molecules used in quorum 

sensing based (QS) communication.  a. Acylated homoserine lactones (AHL).  b. 

Oligopeptides.  c. Autoinducer-2 (AI-2).  Adapted from Lowery et al. 44. 

 

 QS in bacteria has been found to play a role in a wide array of multi-cellular 

bacterial responses such as bioluminescence 56, 57, biofilm formation 58, 59, toxin 

production and virulence 46, 60, sporulation 61 and swarming motility 62.  Many of these 

multi-cellular responses are undesirable.  For example, the formation of biofilms is a 

major source of infections in the human body.  According to a National Institutes of 

Health estimate, over 80% of microbial infections in the body are caused by formation of 

biofilms 63.  In addition to impacting human health, multi-cellular bacterial responses 

impact numerous industrial and engineering applications as well.  Bacterial fouling of 

process engineering equipment such as heat exchangers greatly reduces their performance 

and increases costs 64.  Formation of bacterial biofilms can either accelerate or decelerate 

corrosion based on the conditions prevalent within the film 65.  Clearly, understanding 

bacterial communication and the outcomes of bacterial communication (particularly 

multi-cellular response) is important.  

 Of the various classes of QS molecules, AI-2 is particularly interesting as both 

Gram-positive and Gram-negative bacteria communicate via AI-2.  The enzyme that 

a b c 
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synthesizes 4,5-dihydroxy-2,3-pentanedione (DPD), the precursor to AI-2, has been 

found in over 70 bacterial species 44.  These include bacteria such as Escherichia coli 66 

and Salmonella typhimurium 67 that are the common causes of food contamination, 

pathogenic bacteria such as Listeria monocytogenes 68 and Bacillus anthracis 69 and oral 

bacteria such as Actinomyces naelundii 52 and Streptococcus oralis 52.  In addition, there 

exist species of bacteria that do not possess their own AI-2 synthesis machinery but are 

capable of transducing the AI-2 signal (as it is indicative of the presence of other 

bacteria) 70.  On account of the relative ubiquity of AI-2 and AI-2 based QS in bacteria, 

AI-2 has been dubbed as the universal signaling molecule 71.  The work in this 

dissertation involves AI-2 and AI-2 based QS in two bacteria Escherichia coli and 

Salmonella typhimurium, details of which follow subsequently.   

 

1.3 Quorum Sensing in E. coli and S. typhimurium 

In E. coli and S. typhimurium, DPD is a product of the activated methyl cycle, the main 

donor of methyl in many archaebacterial, eubacterial and eukaryotic cells (Figure 1-3) 44.  

As part of the cycle, the metabolite S-adenosylmethionine (SAM) is converted to the 

toxic intermediate S-adenosylhomocysteine (SAH) via methyl transferases. SAH is 

converted to S-ribosylhomocysteine (SRH) and adenine via the enzyme S-

adenosylhomocysteine nucleosidase (Pfs).  The enzyme S-ribosylhomocysteinase (LuxS) 

then acts on S-ribosyl homocysteine and converts it to DPD and homocysteine.  

Homocysteine is recycled to produce methionine 44.   

 DPD undergoes rapid intra-molecular cyclization to form a family of cyclic 

molecules (Figure 1-4) known as the AI-2 family of molecules.  Thus AI-2 should not be 
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regarded as a single structure but a group of molecules capable of inducing signaling in 

bacteria.  Different bacteria are capable of transducing different forms of the AI-2 

molecule.  In S. typhimurium, the form of AI-2 that produces signaling was determined to 

be (2R, 4S)-2-methyl-2,3,3,4-tetrahydroxytetrahydrofuran (R-THMF) 72.  In E. coli, the 

exact structure of the signal molecule has not yet been determined and is currently under 

investigation.    

 

Figure 1-3. Activated methyl cycle in bacteria.  Metabolite SAM is converted to toxic 

intermediate SAH.  The enzyme Pfs converts SAH to SRH and adenine and the enzyme 

LuxS converts SRH to DPD, the precursor to AI-2, and homocysteine.  Homocysteine is 

recycled to form methionine. Adapted from Lowery et al. 44. 
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Figure 1-4.  AI-2 family of molecules.  DPD, a product of the activated methyl cycle can 

spontaneously cyclize intra-molecularly to form different cyclic forms of AI-2.  Adapted 

from Lowery et al. 44. 

 

 The mechanism of AI-2 synthesis, secretion, uptake and signal transduction in E. 

coli is described in Figure 1-5 (The mechanism is similar to S. typhimurium) 66.  SAH, as 

described earlier is formed as an intermediate of the activated methyl cycle.  The 

enzymes Pfs and LuxS convert SAH to DPD (releasing adenine and homocysteine 

respectively as intermediates in the process).  DPD cyclizes to form AI-2, which is 

exported into the extra-cellular medium.  AI-2 accumulates in the medium in response to 

increased cell population density.  Once the AI-2 concentration in the medium exceeds a 

given threshold, which is indicative of a quorum of bacteria, the uptake and processing of 

AI-2 is triggered.   

 AI-2 is imported into the cells via the Lsr transporter.  Once inside the cell, AI-2 

is phosphorylated by the enzyme kinase, LsrK, to form phosphor-AI-2.  Phospho-AI-2 

binds to the repressor LsrR, which is attached to the promoter region of the lsr operon, 

causing it to detach from the promoter region thus de-repressing the lsr operon.  The 
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expression of a number of genes (lsrA, C, D, B, F, G and lsrR and K) of varying functions 

is controlled by the lsr promoter region.  The key points to note here are that AI-2 is 

converted from SAH by enzymes Pfs and LuxS and that once its concentration exceeds a 

threshold outside the cell; it triggers an uptake and signaling cascade that alters cellular 

response (expression of a variety of genes, proteins etc). 

 

Figure 1-5.  Synthesis, secretion, uptake and transduction of AI-2 in E. coli.  Enzymes 

Pfs and LuxS convert SAH to DPD which cyclizes to form AI-2.  AI-2 is secreted and is 

taken up via the Lsr transporter, is phosphorylated by LsrK, binds to repressor LsrR and 

de-represses the lsr operon (expressing genes lsrA, C, D, B, F, G and lsrR and K, which 

have varying functions).  Adapted from Wang et al. 66. 

 

1.4 Research Motivation  

In the previous sections, a new approach to targeted delivery as well as background on 

AI-2 and AI-2 based QS was presented.  While AI-2 has been observed to affect biofilm 

formation in both E. coli and S. typhimurium, the exact role of AI-2 and AI-2 based 
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signaling in both these organisms as well as other bacteria that are capable of producing 

and recognizing the AI-2 signal is not fully understood.  Current methods to understand 

involve creation of luxS null mutants, i.e. creating bacterial strains that lack the enzyme 

LuxS and hence cannot produce AI-2.  A criticism of using this approach is that LuxS 

plays a role in the activated methyl cycle which would be disturbed in the mutant cells.  

One way around this limitation is to create a method to externally (and controllably) 

deliver AI-2 to the cells.  By doing so, one may deliver AI-2 to the cells without 

disrupting the native machinery and observe the effect of AI-2 on signal transduction and 

cellular response (cell phenotype).   

 Of the three methods of targeted delivery presented in section 1.1, pre-

synthesizing AI-2, packaging it within a delivery mechanism and delivering it to targeted 

bacterial cells is not suitable as AI-2 is a transient molecule (exists in native systems on 

the order of hours) and may not be stable over the time scales of this method.  The 

prodrug approach is also not convenient as it requires chemical synthesis of an inactive 

precursor of AI-2 that is activated in the presence of another activating molecule.  The 

synthesis of a prodrug and activating molecule is not straight forward and requires careful 

design considerations.  Therefore in this dissertation, the third method of delivery 

proposed earlier is used as it results in external delivery of AI-2 and overcomes the 

drawbacks of the first technique by synthesizing and delivering AI-2 at the target cells 

and does not involve design of a prodrug and activating molecule.  Specifically the 

enzymes Pfs and LuxS are purified and the AI-2 biosynthesis pathway is reconstructed in 

vitro in a biological nanofactory as described later.  
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1.5 Global Objective, Global Hypothesis and Specific Aims 

The global objective of this dissertation is to create a method to locally synthesize and 

deliver AI-2 to cells using biological nanofactories.  The overall hypothesis of this work 

is “localized synthesis and delivery of AI-2 via biological nanofactories alters cellular 

response”.   

The specific aims of this research are: - 

1. To create biological nanofactories for localized synthesize and delivery of AI-2. 

Two types of nanofactories to achieve the same, magnetic and antibody nanofactories are 

described here. 

2. To deploy the biological nanofactories to the targeted cells. 

Here the nanofactories bind to the targeted cell surface and locally synthesize and deliver 

AI-2 there. 

3. To observe the effect of localized synthesis and delivery AI-2 via biological 

nanofactories on targeted cell response. 

The targeted cells sense the locally synthesized AI-2, uptake the signal molecule and 

produce and AI-2 specific cellular response which is measured. 

  

1.6 Biological Nanofactories 

A biological nanofactory is, as the name suggests, a nanometer sized biological factory. 

In its ideal form, a biological nanofactory comprises multiple functional modules 

attached together, each module performing a different function.  When deployed, the 

nanofactories attach to the targeted cells, use raw materials in the vicinity of the cells and 

produce molecules-of-interest there via their biosynthetic machinery and thus alter 
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cellular response 73, 74. Figure 1-6 shows a schematic of an ideal biological nanofactory 

which comprises of, but is not limited to, six functional modules: a structural scaffold or 

shell, transport to convey biomolecules to and from the environment, a sensing 

functionality, biochemical machinery to synthesize the molecules-of-interest, a 

mechanism for targeting the cell and externally triggered degradation to terminate 

treatment.   

  

Figure 1-6.  Schematic of an idealized biological nanofactory. An ideal nanofactory 

comprises six modules: a structural scaffold, transport to and from the scaffold, sensing, 

enzymes that synthesize the molecule-of-interest, a targeting element and a self destruct 

mechanism.  Adapted from LeDuc et al. 74. 
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In this dissertation, two types of nanofactories which are working versions of the 

idealized biological nanofactory concept described above are presented: magnetic 

nanofactories and antibody nanofactories.  Both nanofactories consist of AI-2 synthesis 

modules and cell targeting modules (Figure 1-7).  Specifically the enzymes Pfs and LuxS 

are genetically cloned in vitro.  These synthesis enzymes (synthesis module) are attached 

to the cell targeting module.  For the magnetic nanofactories, targeting is achieved via 

chitosan functionalized magnetic nanoparticles.  In the antibody nanofactories, targeting 

is achieved via antibodies.  The nanofactories attach to QS bacteria (e.g. E. coli, S. 

typhimurium) via the targeting module; locally synthesize and deliver AI-2 in the vicinity 

of the bacteria.  The bacteria sense and uptake the locally synthesized AI-2 and produce 

an altered response.  The effect of the locally synthesized AI-2 on cellular response, 

specifically AI-2 based quorum sensing response is measured. 

 

 

  

 

 

 

 

Figure 1-7.  Scheme for altering QS response via localized synthesis and delivery of AI-2 

via biological nanofactories.  a. In vitro reconstruction of AI-2 synthesis pathway.  b. 

Nanofactory assembly, targeting and localized synthesis and delivery of AI-2 alters 

bacterial QS response. 
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1.7 Dissertation Outline 

Chapter 2 describes the in vitro expression and purification of the enzymes Pfs and LuxS 

and the synthesis of chitosan-mag magnetic nanoparticles.  The assembly, deployment 

and cell capture of the magnetic nanofactories as well as the effect of synthesis and 

delivery of AI-2 by the magnetic nanofactories on native QS response of E. coli cultures 

are investigated in this chapter. 

 Chapter 3 describes the construction of a fusion protein HLPT that co-expresses 

both enzymes Pfs and LuxS.  Comparison of the fusion protein performance versus that 

of the constituent enzymes over a wide range of conditions is investigated.  The assembly 

of HLPT onto chitosan-mag nanoparticles and the effect of this nanofactory on AI-2 

based cellular response in E. coli is investigated. 
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 Chapter 4 describes the construction of a fusion protein HGLPT and its use in the 

creation of a self assembled antibody nanofactory.  The effect of the antibody 

nanofactory on AI-2 based cellular response in E. coli and S. typhimurium is investigated. 

 Chapter 5 describes the construction of another fusion protein HG3LPT and its use 

in the spatial assembly of E. coli cells in a microfluidics device.  The effect of this 

construct on cellular response is investigated in the controlled conditions of a 

microfluidics device. 

 Chapter 6 summarizes the work in the previous chapters, describes the broader 

impact of the work and describes ongoing work that applies and/or builds on techniques 

devised in this work. 
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Chapter 2: Magnetic Nanofactories: Localized Synthesis and 
Delivery of Quorum Sensing Signaling Molecule Autoinducer-2 to 
Bacterial Cell Surfaces  
 

2.1 Abstract 

Magnetic ‘nanofactories’, for localized manufacture and signal-guided delivery of small 

molecules to targeted cell surfaces, are demonstrated. They recruit nearby raw materials 

for synthesis, employ magnetic mobility for capture and localization of target cells, and 

deliver molecules to cells triggering their native phenotypic response, but with user-

specified control. Our nanofactories, which synthesize and deliver the “universal” 

bacterial quorum sensing signal molecule, autoinducer AI-2, to the surface of E. coli,  are 

assembled by first co-precipitating nanoparticles of iron salts and the biopolymer 

chitosan. E. coli AI-2 synthases, Pfs and LuxS, constructed with enzymatically 

activatable “pro-tags”, are then covalently tethered onto the chitosan. These enzymes 

synthesize AI-2 from metabolite S-adenosylhomocysteine. Chitosan serves as a 

molecular scaffold and provides cell capture ability; magnetite provides stimuli 

responsiveness. These magnetic nanofactories are shown to modulate the natural 

progression of quorum sensing activity. New prospects for small molecule delivery, 

based on localized synthesis, are envisioned.  

 

2.2 Introduction 

Localized delivery of a molecule-of-interest to a target cell surface is important in cell 

signaling 75-78. When delivered locally, a signaling molecule can produce a higher signal 
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intensity that elicits an enhanced cellular response. For example, the localized delivery of 

growth factors has been shown to stimulate growth in targeted cells or tissue 79-81. 

Various strategies have been employed to locally deliver signal molecules to target cells 

viz. using viral vectors 82, degradable polymeric scaffolds 83, liposomes 84 and 

nanoparticles 85.  All the above methods deliver signal molecules in their final form to 

their respective target cells. In this proof-of-concept paper, we are working with a novel 

and potentially programmable approach for the localized synthesis and delivery of a 

signaling molecule to a target cell surface using a magnetic ‘nanofactory’, which consists 

of enzymes with activatable ‘pro-tags’ conjugated to functionalized magnetic 

nanoparticles. Our technique differs from the above techniques in that it synthesizes the 

signal molecule from a precursor molecule at the surface of the target cell and locally 

delivers it (via the nanofactory). The rationale behind employing such a mode of 

localized synthesis and delivery is that we can control the amounts of signal molecule 

delivered to the target cell thus potentially enabling an ex vivo fine-tuning of cellular 

response. 

A nanofactory is a nano-sized factory that combines three attributes: an ability to 

‘manufacture’ the signaling molecule (synthesis ability), an ability to bind to the cell 

surface (cell capture ability) thus localizing the synthesized signaling molecule to the cell 

surface and an ability to be directed and recovered in response to an external stimulus 

(stimuli responsiveness). We introduce ‘nanofactories’ by demonstrating their assembly 

via biologically benign techniques and their use by locally synthesizing and delivering 

the quorum sensing signaling molecule autoinducer-2 (AI-2) at the surface of Escherichia 
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coli cells. The appropriate AI-2 specific cell response confirms altered phenotypic 

behavior and a functioning ‘programmable’ nanofactory. 

AI-2 is an inter- and intra-species signaling molecule that plays a role in quorum 

sensing (QS) 43, a process that mediates inter- and intra-species bacterial communication 

resulting in coordinated multicellular behavior. Diverse cell processes such as 

bioluminescence, biofilm formation, virulence, antibiotic production and competence 45, 

51, 71, 86-88 are in part, QS regulated. In E. coli, AI-2 is synthesized from S-

adenosylhomocysteine (SAH) via a two-step enzymatic reaction involving the enzymes 

S-adenosylhomocysteine nucleosidase (Pfs) and S-ribosylhomocysteinase (LuxS) 66. To 

confer AI-2 synthesis ability to the nanofactories, the enzymes Pfs and LuxS are attached 

to functionalized magnetic nanoparticles using activatable “pro-tags” at their C-termini 

(Figure 2-1).  

In the first step, the magnetic carrier is synthesized by the dropwise addition of a 

mixture of ferric and ferrous salts ([Fe3+]/[Fe2+] = 2) and the biopolymer chitosan to a 

vigorously stirred base (NH4OH) under an inert atmosphere. The resultant nano-sized co-

precipitates contain both chitosan and magnetite (Fe3O4) called ‘chitosan-mag’ 89, 90. 

Magnetite confers magnetic-responsiveness (stimuli responsiveness) to the nanofactory 

while chitosan serves a dual-role: it enables the nanofactory to attach to the target cell 

surface (cell capture ability) and it also provides amine-groups for attaching the enzymes 

Pfs and LuxS to the nanofactory.  
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Figure 2-1.  Overview of assembly and use of nanofactories to locally synthesize and 

deliver QS signaling molecule, AI-2, to a target cell. Synthesis of the magnetic carrier, 

chitosan-mag, by co-precipitation of iron salts and chitosan; attachment of pro-tagged Pfs 

and LuxS to chitosan-mag by ‘activation’ using tyrosinase to assemble magnetic 

nanofactories; capture of target cells by the magnetic nanofactories; recovery of captured 

cells using an external magnet; cell surface synthesis and delivery of AI-2 by enzymes 

Pfs and LuxS; uptake of AI-2 and production of cellular response (AI-2-dependent 

reporter).  
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This dual-role of chitosan is related to its unique pH-dependent solubility. The 

amine-groups of chitosan have a pKa of about 6.3 91, 92. At a pH below the pKa, most 

amine-groups are protonated and chitosan is positively charged and water soluble; at pH 

above the pKa, most amine-groups are deprotonated and chitosan is neutral and insoluble 

in water.  

Pfs with a pentatyrosine pro-tag at its C-terminus [(His)6-Pfs-(Tyr)5] is covalently 

assembled onto the available surface chitosan in chitosan-mag by activation using the 

enzyme tyrosinase. Upon the addition of tyrosinase, the tyrosine residues in the pro-tag 

are activated and form o-quinones that can then react with the amine-groups of chitosan 

93-95. Similarly, LuxS with the C-terminus pro-tag [(His)6-LuxS-(Tyr)5] is assembled onto 

chitosan-mag. The motivation for using pro-tags is that they are located at the C-termini 

of both Pfs and LuxS and extend away from their respective active sites. The addition of 

tyrosinase selectively activates the tyrosine residues of the tag and facilitates attachment 

of the enzymes via the tag to chitosan with intact enzymatic activity.  

The nanofactories containing Pfs and those containing LuxS are then combined to 

obtain a suspension of magnetic nanofactories with AI-2 synthesis ability. These are 

added to a suspension containing the target cells (E. coli) where they bind to the cell 

surface via the available surface chitosan 89, 90 (chitosan molecules without attached 

enzymes). The nanofactories with the attached cells are recovered using an external 

magnetic field, resuspended in fresh medium or buffer and in vitro AI-2 is synthesized by 

the nanofactories, by addition of SAH, at the surface of the target cells. The in vitro 

synthesized AI-2 is delivered at the cell surface and taken up by the Lsr transporter 

producing an AI-2 specific transcriptional response which is measured by β-galactosidase 
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reporter activity. The interception of cell-cell communication and subsequent interruption 

of quorum-sensing behavior is a topic of intense interest because downregulating specific 

cell functions (e.g., cell attachment, virulence) that lead to pathology, but are not essential 

for a pathogen’s viability, may lower the rate of emergence of resistant strains.  We 

believe nanofactories offer many advantages relative to the localized delivery of small 

molecules, in that the molecule could eventually be synthesized and delivered at a site, at 

a prescribed concentration and time.   

 

2.3 Materials and Methods 

Chemicals 

Chitosan (average molecular weight 50,000 g/mol), iron (II) chloride tetrahydrate 

(FeCl2.4H2O), iron (III) chloride hexahydrate (FeCl3.6H2O), isopropyl β-D-

thiogalactopyranoside (IPTG), phosphate buffered saline (PBS, 9.6 g/L), tyrosinase (from 

mushroom), S-(5’-deoxyadenosin-5’)-L-homocysteine (SAH), chloroform, sodium 

dodecyl sulfate salt (SDS, >98.5 %), o-nitrophenyl-β-D-galactopyranoside (ONPG), 2-

mercaptoethanol, imidazole, zinc acetate dehydrate, and glycerol were all purchased from 

Sigma Aldrich. Glacial acetic acid (CH3COOH), ampicillin sodium salt, kanamycin, Tris, 

sodium carbonate (Na2CO3), dibasic sodium phosphate (Na2HPO4.7H2O), monobasic 

sodium phosphate (NaH2PO4.H2O), potassium chloride (KCl), magnesium sulfate 

(MgSO4.7H2O), sodium chloride were all purchased from Fisher Scientific. Ammonium 

hydroxide (NH4OH) was purchased from J. T. Baker. 5- (and 6)-carboxyfluorescein 

succinimidyl ester (NHS-fluorescein) and ((4’-aminoacetamido) methyl) fluorescein 

(amino-fluorescein) were purchased from Molecular Probes.  



www.manaraa.com

 

 22 
 

 

Synthesis of chitosan-mag and mag particles 

A solution of chitosan (2.02 % w/w, pH 5.5) was prepared as described elsewhere 92. 9.9 

mL (0.2 g) chitosan solution, 0.795 g of FeCl2.4H2O and 2.162 g of FeCl2.4H2O were 

dissolved in 40 mL double distilled water. This reaction mixture, which contains 0.5 % 

chitosan, 0.2 M [Fe3+], 0.1 M [Fe2+] (i.e. [Fe3+]/ [Fe2+] = 2), was purged with N2 gas and 

added dropwise to vigorously stirred 2M NH4OH (pH 11.8), also previously purged with 

N2). A positive N2 pressure was maintained in the reaction chamber and care was taken to 

ensure that no bubbles were formed during the vigorous stirring (1500 – 2000 rpm). The 

resultant black precipitate that contains chitosan-mag particles was washed with copious 

amounts of double distilled water to remove the excess base and the pH of the suspension 

was brought to 7. For long term storage, a 10 mg/mL suspension of chitosan-mag was 

prepared in 0.5 % dilute acetic acid and stored at 4 oC for future use. For synthesis of 

mag, conditions identical to those used for the synthesis of chitosan-mag were used. 

However, no chitosan solution was used in the synthesis of mag. 

 

Bacterial strains and growth media 

The bacterial strains used in this study are listed in table 2-1. The Luria-Bertani broth 

contained 5 g/L of yeast extract (Sigma), 10 g/L of Bacto tryptone (Difco) and 10 g/L 

NaCl (J. T. Baker).  The components of the Autoinducer Bioassay medium (AB) are 

described elsewhere 96. 
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Table 2-1. Bacterial strains, plasmids and oligonucleotide primers used in this study. 
 

Strain or 
plasmid or 

primer 
Relevant genotype and property Reference 

Escherichia coli strains 
W3110 Wild type  Laboratory 

stock 
BL21 F’ ompT hsdSB (rB

-mB
-) gal dcm 97 

ZK126 Wild type strain derivative, W3110 ΔlacU160-tna2 98 
LW7 ZK126 ΔluxS :: Kan 66 
DH5α recA1 supE44 endA1 hsdR17 gyrA96 relA1 thiΔ (lac-proAB) 

F' [traD36 proAB+ lacIq lacZΔM15] 
Invitrogen 

NC13 RK4353 Δpfs (8-226)::Kan 99 
Vibrio harveyi strains 

BB170 BB120 luxN :: Tn5 (sensor 1-, sensor 2+) 100 
Plasmids 

pGFP pTrcHisB derivative, gfp+, Ampr 97 
pTrcHis-
LuxS-Tyr 

pTrcHisC derivative, W3110 luxS+, Ampr This study 

pTrcHis-
Pfs-Tyr 

pTrcHisC derivative, W3110 pfs+, Ampr This study 

pFZY1 galK’-lacZYA transcriptional fusion vector, Ampr 101 
pLW11 pFZY1 derivative, containing lsrACDBFG promoter region, 

Ampr 
66 

Oligonucleotide primers 
Name Sequence Relevant property 

PfsF CCGCTCGAGATATGAAAATCG 
GCATCATTG 

Upstream primer for cloning pfs 
from W3110 contains HindIII 

5TyrPfsR 
CCCAAGCTTTTAATAATAATAA
TAATAGCCATGTGCAAGTTTCT
GCA 

Downstream primer for cloning pfs 
from W3110 encodes 5-Tyr-tag 
and XhoI 

LuxSF CCGCTCGAGATATGCCGTTGTT
AGATAGCT 

Upstream primer for cloning luxS 
from W3110 contains HindIII 

5TyrLuxSR 
CCCAAGCTTCTAATAATAATAA
TAATAGATGTGCAGTTCCTGCA
ACT 

Downstream primer for cloning 
luxS from W3110 encodes 5-Tyr-
tag and XhoI 
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Plasmid construction 

To express and purify Pfs with tyrosine tag (His-Pfs-Tyr) and LuxS with tyrosine tag 

(His-LuxS-Tyr), the plasmids pTrcHis-Pfs-Tyr and pTrcHis-LuxS-Tyr were constructed 

by PCR amplification of  pfs (699 bp) and luxS (516 bp) from genomic DNA of E. coli 

strain W3110 (http://ecoli.aist-nara.ac.jp/) using the oligonucleotide primers listed  in 

table 2-1.  PCR reactions were carried out by using PCR Master Mix (Promega) and 

followed by gel purification with QIAquick gel extraction kit (Qiagen).  PCR products 

were digested with HindIII and XhoI, and the products were extracted by gel purification 

and then inserted into pTrcHisC (Invitrogen).  To verify the integrity of all constructs, 

DNA sequencing was performed at the DNA core facility of the Center for Biosystems 

Research (University of Maryland Biotechnology Institute).  To obtain purified His-pfs-

Tyr and His-luxS-Tyr, pTrcHis-pfs-Tyr and pTrcHis-luxS-Tyr plasmids were 

transformed into DH5α (defective luxS) and NC13 (pfs knockout), respectively. In this 

way, there is no contaminating Pfs in LuxS preparations and vice versa. 

 

Purification of (His)6-Pfs-(Tyr)5 and (His)6-LuxS-(Tyr)5  

E. coli DH5α pTrcHis-Pfs-Tyr [for Pfs: (His)6-Pfs-(Tyr)5] and E. coli NC13 pTrcHis-

LuxS-Tyr [for LuxS: (His)6-LuxS-(Tyr)5] were separately cultured at 37 oC and 250 rpm 

in LB medium supplemented with ampicillin at 50 μg/mL. When the optical densities 

(OD600) of the cell cultures were between 0.4 - 0.6, IPTG was added to induce enzyme 

production (for Pfs culture: final concentration used was 1 mM IPTG, for LuxS culture: 

final concentration used was 1mM IPTG and 0.1 mM zinc acetate). After 6 hr, cells were 

collected by centrifugation at 6,000 xg for 20 minutes at 4 oC. The cells were stored at -
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20 oC or directly resuspended in PBS + 10 mM imidazole. The resuspended cells were 

lysed by sonication using Sonic Dismembrator 550 (Fisher Scientific). After sonication, 

the soluble cell extract was collected by centrifugation at 14,000 xg for 15 minutes at 4 

oC. The soluble extract was filtered using a 0.22 μm polyether sulfone, low protein 

binding filter (Millipore). The filtered extract was then loaded on a pre-equilibrated 

immobilized metal-ion affinity chromatography (IMAC) column (HiTrap Chelating HP, 

Amersham Biosciences). The sample was washed with varying amounts of phosphate 

buffer, sodium chloride and imidazole (Wash 1: 20 mM PO4
3-, 250 mM NaCl and 10 mM 

imidazole; Wash 2: 20 mM PO4
3-, 250 mM NaCl and 50 mM imidazole). The sample was 

then eluted with 20 mM PO4
3-, 250 mM NaCl and 350 mM imidazole and dialyzed 

overnight into PBS at 4 oC. For long term storage, glycerol was added to the enzyme 

solution (final glycerol concentration 30 %) and the samples were stored at -80 oC until 

use.  

 

Reaction with NHS-fluorescein and amino-fluorescein 

Chitosan-mag and mag in dilute CH3COOH (0.5 mg/mL, pH 6) were separately reacted 

with either NHS-fluorescein or amino-fluorescein in double distilled water (5 μg/mL). 

The reaction mixture was maintained at pH 6 by PBS. The reaction was allowed to 

proceed at room temperature for 30 minutes. After reaction, the particles were recovered 

using a magnetic stand (Promega MagneSphere® stand Z5342). The particles were 

collected within 3 minutes. After collection, the particles were washed with copious 

amounts of double distilled water and resuspended in dilute CH3COOH, using the 

magnetic stand for collection after each wash. The fluorescence of the particles was 
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measured using a fluorescence plate reader (Perkin Elmer LS 5S, excitation wavelength 

480 nm, slit width 10 nm, emission wavelength 510 nm, slit width 20 nm, emission cut-

off 515 nm). 

  

Cell capture using chitosan-mag 

E. coli BL21 pGFP was cultured at 37 oC and 250 rpm in LB medium supplemented with 

ampicillin at 50 μg/mL. When the optical density OD600 of the cell culture was between 

0.4 - 0.6, IPTG was added to induce GFP production (final concentration used was 1 mM 

IPTG). After 6 hour induction, cells were collected by centrifugation at 6,000 xg for 10 

minutes at room temperature. The cells were resuspended in water with the pH adjusted 

using dilute CH3COOH where needed. The pH was varied from 4 to 7. For cell capture 

chitosan-mag in dilute CH3COOH (0.5 mg/mL, pH varied from 4 to 7) was used. Capture 

was carried out at room temperature by using the cell suspension with the appropriate 

chitosan-mag suspension at the identical pH for 30 minutes. After capture, the particles 

were collected using the magnetic stand (specifications above) and washed thrice with 

double distilled water each time collecting the particles with the magnetic stand. After 

washing the particles were suspended in double distilled water at appropriate pH. The 

optical densities OD600 of the cell suspension before capture, of the supernatant after 

capture and of the three washes were measured. The optical density measurements were 

made simultaneously after the final wash and the amount of growth taking place during 

the capture and wash process was assumed to be minimal. To determine the amount of 

cells on the particles, the fluorescence of the resuspended particles with the attached cells 

was measured using a fluorescence plate reader mentioned above (excitation wavelength 
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395 nm, slit width 10 nm, emission wavelength 510 nm, slit width 10 nm, emission cut-

off 430 nm). To determine the amount of cells captured in terms of difference in optical 

density, the following formula was used: ΔOD600 = ODcellsuspension – ODsupernatant – ODwashes 

accounting appropriately for dilution.   

 

Nanofactory assembly: attaching (His)6-Pfs-(Tyr)5 and (His)6-LuxS-(Tyr)5 to 

chitosan-mag 

Chitosan-mag in dilute CH3COOH (0.5 mg/mL, pH 6) was reacted with (His)6-Pfs-(Tyr)5 

of varying concentrations (10-150 μg/mL) using activating enzyme, tyrosinase (100 

U/mL). The reaction was carried out for 1 hour at 37 oC. After reaction, the particles with 

the attached Pfs (now referred to as nanofactories) were collected using a magnetic stand 

(details above). The nanofactories were washed thrice with double distilled water to 

remove unbound Pfs and resuspended and stored until further use. Similarly, chitosan-

mag in dilute CH3COOH (0.5 mg/mL, pH 6) was reacted with (His)6-LuxS-(Tyr)5 of 

varying concentrations (10-150 μg/mL) using activating enzyme tyrosinase (100 U/mL) 

and treated as above to obtain nanofactories with bound LuxS.   

 

In vitro synthesis of AI-2 

The nanofactories containing Pfs and those containing LuxS were combined to obtain 

nanofactories with AI-2 synthesis ability. The in vitro synthesis of AI-2 was carried out 

by the addition of SAH (0.5 mM in 100 mM Tris-HCl buffer pH 7.8) to the nanofactories 

(1 mg/mL, 0.5 mg chitosan-mag with bound Pfs and 0.5 mg chitosan-mag with bound 

LuxS, pH 6). The reaction was carried out for 2 hours at 37 oC. After the specified time 
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the reaction was arrested using chloroform. The nanofactories were centrifuged at 12000 

xg for 5 minutes. The ‘enzyme-free’ supernatants (now containing in vitro AI-2) were 

collected and stored at -20 oC until further use. 

 

AI-2 activity assay 

The AI-2 activity assay was carried out as described elsewhere . Briefly, 20 μl of AI-2 

assay sample (collected during the above synthesis reaction) was mixed with 180 μl of 

BB170 suspension prepared by 5000-fold dilution of an overnight culture with AB 

medium. AB medium was used as negative control and a 4 hr conditioned LB medium 

from E. coli W3110 grown at 250 rpm was used as a positive control. Bioluminescence 

obtained from experimental samples was normalized to the bioluminescence obtained for 

the negative control. All assays were repeated at least thrice with separately prepared 

samples to confirm the reproducibility of AI-2 activity. 

 

Localized synthesis and delivery of AI-2 at cell surface using magnetic nanofactories 

E. coli ZK126 pLW11 and E. coli LW7 pLW11 were pre-cultured overnight at 37 oC and 

250 rpm in LB medium supplemented with ampicillin at 100 μg/mL. 0.5 mL of these 

overnight pre-cultures was diluted in 49.5 mL LB medium supplemented with 60 μg/mL 

ampicillin. These cultures were grown at 30 oC at 250 rpm. The nanofactories were 

assembled as mentioned above. At 2-hour intervals (from 0 – 8 hours), samples from 

these cell cultures were withdrawn. For each 2-hour sample, the cells were collected by 

centrifugation at 6,000 xg for 10 minutes at room temperature. Cell suspensions were 

prepared in 10 mM Phosphate Buffer (PB, pH 6). Cell capture was carried out at room 
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temperature using the magnetic nanofactories (1 mg/mL chitosan-mag, 0.5 mg chitosan-

mag with bound Pfs, 0.5 mg of chitosan-mag with bound LuxS, pH 6) or just chitosan-

mag (negative control, 1 mg/mL, pH 6). The nanofactories or chitosan-mag with captured 

cells were recovered by using a magnetic stand (specifications above). The nanofactories 

or chitosan-mag were washed thrice and resuspended in PB (pH 6). OD600 of the cell 

suspensions, supernatants and washes were measured as mentioned above to determine 

the amount of captured cells as mentioned above.  In vitro AI-2 was synthesized at the 

surface of the cells captured by the nanofactories or chitosan-mag by adding 0.5 mM 

SAH (37 oC, 2 hour synthesis). After synthesis, the nanofactories and chitosan-mag with 

attached cells were recovered using the magnetic stand. A Miller assay 102 was performed 

to determine the AI-2 dependent β-galactosidase expression for the cells captured by the 

nanofactories and chitosan-mag.  

 To study the effect of localized synthesis and delivery, in vitro AI-2 was 

synthesized at the surface of the cells (E. coli LW7 pLW11; 8 hour time-point) captured 

by the magnetic nanofactories (1 mg/mL, 0.5 mg chitosan-mag with bound Pfs, 0.5 mg of 

chitosan-mag with bound LuxS, pH 6) by adding 0.5 mM SAH (37 oC, 2 hour synthesis) 

to the reaction mixture. After synthesis, the nanofactories were recovered using the 

magnetic stand and the AI-2 dependent Miller units of β-galactosidase expression of 

captured cells was determined. The β-galactosidase expression was compared with that 

obtained for cells captured by chitosan-mag (1mg/mL) with 50 μg/mL each of unbound 

Pfs and LuxS and 0.5 mM SAH (37 oC, 2 hour synthesis) added to the reaction mixture, 

cells captured by chitosan-mag (1mg/mL) with 0.5 mM SAH (37 oC, 2 hour synthesis) 

added to the reaction mixture, unattached (free) cells with 50 μg/mL each of unbound Pfs 
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and LuxS and 0.5 mM SAH (37 oC, 2 hour synthesis) added to the reaction mixture or 

unattached cells with 0.5 mM SAH (37 oC, 2 hour synthesis) added to the reaction 

mixture.  

 

Electron microscopy 

Transmission electron microscopy (TEM) images of the chitosan-mag particles were 

taken using a Zeiss EM10 CA microscope at the University of Maryland Biological 

Ultrastructure Facility. For the scanning electron microscopy (SEM) images of the 

nanofactories attached to the target cells, the nanofactories were assembled as described 

above and the cell capture was carried out as mentioned above at the 8 hour time-point. 

After cell capture, the nanofactories were recovered and the washed thrice to remove any 

uncaptured cells or traces of cell broth with double distilled water. The cells captured on 

the nanofactories were first fixed with 2 % glutaraldehyde and then with 1 % osmium 

tetroxide. The samples were then dehydrated with 100 % ethanol and dried using critical 

point drying technique. The samples were then mounted and coated with gold (Au): 

palladium (Pd) alloy and viewed using a Hitachi S-4700 microscope. For TEM images of 

the nanofactories attached to the cells, after capture the particles with attached cells were 

fixed first in 2 % glutaraldehyde, then in 1% osmium tetroxide and finally in 2 % uranyl 

acetate. The fixed samples were dehydrated in 100 % ethanol. The samples were 

progressively infiltrated with increasing amounts of Spurr’s resin mixture in propylene 

oxide. Following this, the samples were embedded in fresh Spurr’s resin and incubated at 

70 oC. After curing at the 70 oC, the samples were sectioned using a diamond tip 

microtome and the sections were viewed using a Zeiss EM10 CA microscope. 
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Statistical Analysis 

To determine significant differences between different groups of data for a single 

experiment, a single-factor ANOVA test was performed. The data were tested to see if 

they fulfilled the homogeneity of variance assumption. For experiments that had more 

than two groups of data, multiple comparison tests were performed to determine which 

group/groups were significantly different (higher or lower) than other groups. * indicates 

that the group is significantly different from other groups (higher or lower, p < 0.01) 

 

2.4 Results 

Synthesis of the magnetic carrier with accessible surface amine-groups of chitosan 

The first step in the assembly of a magnetic nanofactory is the synthesis of the magnetic 

carrier ‘chitosan-mag’ (Figure 2-1) by the dropwise addition of a mixture of ferrous and 

ferric chloride and chitosan into a vigorously stirred base (NH4OH) under anoxic 

conditions (co-precipitation). Figure 2-2a shows a transmission electron micrograph of 

the resultant chitosan-mag nanoparticles (average particle size ~ 10 nm). Surface 

accessibility of the amine-groups of chitosan (0.5 mg/mL, pH 6) is tested by labeling the 

nanoparticles with an amine-reactive fluorescent dye (5- (and 6)-carboxyfluorescein 

succinimidyl ester (NHS-fluorescein), 5 μg/mL, 30 minutes reaction at room 

temperature) 103. After reaction with NHS-fluorescein, the particles are collected using an 

external magnet and unreacted dye is removed by washing with double distilled water. 

Figure 2-2b shows the Normalized relative fluorescence units (RFU) of NHS-fluorescein-

labeled chitosan-mag particles compared to identically prepared controls (chitosan-mag 
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particles reacted with ((4’-aminoacetamido) methyl) fluorescein (amino-fluorescein) 

which is not directly amine-reactive, NHS-fluorescein-labeled magnetite (mag) 

nanoparticles without chitosan and mag particles reacted with amino-fluorescein). The 

fluorescence of chitosan-mag labeled with NHS-fluorescein is ~ 13.5 fold higher than 

that of chitosan-mag without NHS-fluorescein, ~ 4.5 fold higher than chitosan-mag 

reacted with amino-fluorescein, ~ 9.5 fold higher than mag with NHS-fluorescein and ~ 

15.5 fold higher than mag with amino-fluorescein. These results confirm that amine-

reactive NHS-fluorescein preferentially binds to chitosan and that chitosan-mag particles 

have abundant amine-reactive sites.  

 

Cell capture using chitosan-mag (cell capture ability) 

Chitosan-mag particles (0.5 mg/mL) are tested for their ability to capture cells via 

accessible surface chitosan (cell capture ability) by adding the particles to a suspension 

containing fluorescing cells [E. coli BL21 pGFP induced with 1 mM IPTG to produce 

green fluorescent protein (GFP) 97]. The particles are contacted with the fluorescing cells 

for 30 minutes at room temperature. Because chitosan’s amines confer pH-sensitive net 

charge, we investigated the effect of pH on cell capture over a range of pH (from pH 4 to 

7). After capture, the particles with the attached cells are recovered with an external 

magnet and rinsed 3 times with double distilled water to remove the unbound cells.  
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Figure 2-2.  Synthesis of the magnetic carrier chitosan-mag with accessible surface 

amine-groups of chitosan. (a) TEM of the synthesized chitosan-mag particles. (b) 

Normalized Relative Fluorescence Units (Normalized RFU) produced by reacting 

chitosan-mag and mag with either NHS-fluorescein (amine-group reactive dye) or amino-

fluorescein (control dye). * indicates significant difference (p < 0.01). 
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The optical density at 600 nm (OD600) of the cell suspension before capture, the 

supernatant after capture and the washes are measured to estimate the amount of captured 

cells. The difference in optical density, ΔOD600, (ΔOD600 = ODcellsuspension – ODsupernatant – 

ODwashes accounting appropriately for the dilutions) corresponds to the optical density of 

the captured cells. The fluorescence of the resuspended particles with the attached cells is 

also measured using a fluorescence plate reader as a second way of estimating the amount 

captured cells. Figure 2-3 shows ΔOD600 (the optical density of the captured cells) and 

the measured normalized RFU of the particles plus attached cells (fluorescence of 

chitosan-mag with captured cells divided by that of chitosan-mag without cells) as a 

function of pH. The cell capture by chitosan-mag is observed to be higher at lower pH (≤ 

6) and decreases as the pH is increased to 7. The capture was found to remain low when 

the pH was increased above 7 (data not shown) 89. This indicates that chitosan-mag can 

be used for cell capture (pH ≤ 6). We use pH 6 for subsequent experiments involving cell 

capture. 

  

Assembly of magnetic nanofactories: attaching Pfs and LuxS to chitosan-mag via 

tyrosinase activatable pro-tags (synthesis ability) 

The QS enzymes, Pfs and LuxS, are both engineered to have hexahistidine-tags at their 

N-termini and pro-tags (pentatyrosine-tags) at their C-termini [viz. (His)6-Pfs-(Tyr)5 and 

(His)6-LuxS-(Tyr)5]. The hexahistidine tags at the N-termini are used to obtain the 

purified enzymes via immobilized metal ion affinity chromatography (IMAC). The pro-

tags at the C-termini are used to increase the amount of accessible tyrosine residues for 

the reaction conjugating the enzymes to chitosan.  
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Figure 2-3.  Cell capture using chitosan-mag (cell capture ability). Optical density 

corresponding to the amount of cells captured by chitosan-mag as a function of pH 

(∆OD600, triangles) and measured normalized RFU of chitosan-mag with attached 

fluorescing cells (captured cells) as a function of pH (squares). * indicates significant 

difference (p < 0.01). 
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They facilitate formation of the enzyme-chitosan conjugate with intact enzymatic 

activity. Tyrosinase is used to activate the pro-tag; it converts accessible tyrosine residues 

to reactive o-quinones 93-95. These electrophilic o-quinones can then react non-

enzymatically with the nucleophilic amine-groups of accessible surface chitosan to form 

Schiff bases or Michael-type adducts that couple the enzymes on to chitosan 104 (Figure 

2-4a and Figure 2-5).  

 In our experiments, we first attach Pfs to chitosan-mag (0.5 mg/mL, pH 6) by 

activation of its pro-tag using tyrosinase (100 U/mL). The concentration of added Pfs is 

varied [10 μg/mL (0.34 μM), 50 μg/mL (1.70 μM) or 150 μg/mL (5.10 μM)]. After 

reaction, the nanofactories with Pfs are recovered by an external magnet and rinsed thrice 

with distilled water to remove any unbound enzyme. Similarly, we assemble magnetic 

nanofactories with LuxS by attaching LuxS to chitosan-mag (0.5 mg/mL, pH 6) using 

tyrosinase (100 U/mL) and varying concentrations of added LuxS [concentrations 10 

μg/mL (0.40 μM), 50 μg/mL (2.00 μM) or 150 μg/mL (6.00 μM)]. Studies calculating the 

amount of pro-tagged proteins bound to chitosan (i.e. mg of bound protein/mg of 

chitosan) upon tyrosinase activation can be found elsewhere 104. The nanofactories with 

Pfs and those with LuxS are then combined to form a single solution with AI-2 synthesis 

ability (containing both types of magnetic nanofactories). The nanofactories synthesize in 

vitro AI-2 upon addition of the substrate SAH (Figure 2-4a; 0.5 mM, 37 oC, 2 hr 

reaction). The reaction is arrested and the reaction mixture is analyzed to determine the 

amount of in vitro AI-2.  
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Figure 2-4.  Assembly of the magnetic nanofactories: attaching Pfs and LuxS to chitosan-

mag via tyrosinase activatable pro-tags (synthesis ability). (a) Attachment of the enzymes 

to chitosan-mag by activation of the pro-tags using tyrosinase; synthesis of AI-2 from 

substrate (SAH), the two-step synthesis is catalyzed by the enzymes Pfs and LuxS. (b) 

AI-2 activity observed in reporter strain in response to in vitro AI-2 synthesized by 

adding SAH to nanofactories containing varying (increasing) amounts of added Pfs and 

LuxS. (c) AI-2 activity observed in reporter strain in response to in vitro AI-2 synthesized 

by adding SAH to either the nanofactories or one or more element of  the nanofactory. 
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Figure 2-5.  Attaching Pfs and LuxS with C-termini pro-tags to chitosan via tyrosinase. 

(a) Tyrosinase activates the tyrosine residues of the C-terminus pro-tag to generate 

reactive o-quinones that can react with the amine-groups of chitosan attaching the 

enzymes to chitosan. (b) Crystal structure of Pfs dimer 105, arrows show position of the C-

termini pro-tag. (c) Crystal structure of LuxS dimer 106, arrows show position of the C-

termini pro-tag. 
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Here, ‘enzyme-free’ solutions containing AI-2 are added to a suspension 

containing a reporter bacterial strain Vibrio harveyi BB170 100 which produces light in 

response to added AI-2 107. The luminescence produced indicates the AI-2 activity in the 

added sample. Figure 2-4b shows the AI-2 activity (luminescence produced by V. harveyi 

with AI-2 in added sample divided by that produced without AI-2 in added sample) for 

varying amounts of added enzymes (Pfs and LuxS, 10-150 μg/mL). The AI-2 activity 

increases with increasing amounts of added enzymes.  

For in vitro AI-2 synthesis ability, we expect that both types of nanofactory (i.e. 

with attached Pfs and LuxS) and substrate SAH need to be present. To test this, in vitro 

AI-2 synthesis was carried out using combinations of the above elements (when used: 1 

mg/mL chitosan-mag, 0.5 mM SAH, 50 μg/mL Pfs and 50 μg/mL LuxS).  Figure 2-4c 

shows that the observed AI-2 activity is much higher when all elements for AI-2 

synthesis are simultaneously present, ~ 4 fold lower in the case of nanofactories with 

only attached LuxS and added SAH, and negligible for all other cases.  

 

Localized synthesis and delivery of in vitro AI-2 at the cell surface using magnetic 

nanofactories 

To demonstrate user-specified localized synthesis and delivery of AI-2, cultures of E. coli 

are grown in shake flask cultures, exposed to magnetic nanofactories, and evaluated for 

phenotypic response in a set of controlled experiments. The magnetic nanofactories are 

assembled (1 mg/mL chitosan-mag; 0.5 mg chitosan-mag with 50 μg/mL Pfs and 0.5 mg 

chitosan-mag with 50 μg/mL LuxS) and added to a growing suspension of either E. coli 

ZK126 pLW11 98 or E. coli LW7 pLW11 (pH 6) for cell capture 66. E. coli ZK126 is a lac 
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null mutant while E. coli LW7 is a lac and luxS double mutant. The plasmid, pLW11, 

employs the lsr promoter (AI-2 responsive) to drive β-galactosidase expression 66.  

Cell capture is performed at 2-hour intervals throughout the experiments (from 

inoculation to stationary phase). There is no apparent difference in capture efficiency due 

to the added enzymes in the case of the nanofactories (Figure 2-6a and b). After capture, 

the nanofactories with the attached cells are recovered using an external magnet and 

unbound cells are rinsed off (phosphate buffer, PB).  

After capture, in vitro AI-2 is synthesized by the nanofactories at the cell surface 

by the addition of SAH (0.5 mM, 37 oC, 2 hr reaction). Functioning nanofactories are 

demonstrated by AI-2 synthesis and delivery at the surface of these cells, followed by AI-

2 transport and altered gene expression (as determined by AI-2 dependent β-galactosidase 

expression). In Figure 2-6c and 6d, AI-2 dependent β-galactosidase expression is 

compared to the negative controls (Figure 2-6c for E. coli ZK126 pLW11 and Figure 2-

6d for E. coli LW7 pLW11). In the case of LuxS+ cells (ZK126), which synthesize their 

own AI-2, the increase in β-galactosidase expression is enhanced ~ 4-fold due to the AI-2 

synthesized at the cell surface. In the case of luxS- cells (LW7), the increase is >10-fold. 

These results clearly indicate altered phenotypic behavior and a functioning 

‘programmable’ nanofactory. Figure 2-6e and 6f show SEM and TEM images of the 

nanofactories attached to E. coli LW7 pLW11.   

To study the benefit of localized synthesis and delivery of AI-2, the nanofactories 

are compared to various other configurations using either free cells or cells attached to 

chitosan-mag (1 mg/mL) either with or without the addition of free enzymes (Pfs and 

LuxS 50 μg/mL).  The control experiments are designed to synthesize equivalent levels 
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of AI-2. In Figure 2-6g, the cell response to AI-2 delivered locally via nanofactories is 2-

fold higher than that observed for delivery by diffusion from the bulk. Our cell surface 

approach using the magnetic nanofactories produces the highest AI-2 dependent β-

galactosidase expression indicating that localized synthesis and delivery of AI-2 results in 

an increased AI-2 specific transcriptional response. 

 

 
 
 

 

Figure 2-6.  Localized synthesis and delivery of in vitro AI-2 at the target cell surface 

using magnetic nanofactories. (a) LuxS+: Cell capture using magnetic nanofactories: Δ 

optical density of cells captured by the nanofactories at various time-points for E. coli 

ZK126 pLW11 (∆OD600; columns) and corresponding growth curve. (b) LuxS-: Cell 

capture using magnetic nanofactories: Δ optical density of cells captured by the 

nanofactories at various time-points for E. coli LW7 pLW11 (∆OD600; columns) and 

corresponding growth curve. (c) LuxS+:  AI-2 dependent β-galactosidase activity 

produced in response to synthesis and delivery of AI-2 by nanofactories to the surface of 

the target cells (E. coli ZK126 pLW11, Miller units). * indicates significant difference (p 

< 0.01) (d) LuxS-:  AI-2 dependent β-galactosidase activity produced in response to 

synthesis and delivery of AI-2 by nanofactories to the surface of the target cells (E. coli 

LW7 pLW11, Miller units). * indicates significant difference (p < 0.01). (e) SEM of the 

nanofactories attached to the target cells, E. coli LW7 pLW11. (f) TEM of nanofactories 

attached to the target cells, E. coli LW7 pLW11. (g) AI-2 dependent β-galactosidase 

activity produced in response to localized synthesis and delivery of AI-2 by nanofactories 

to the surface of the target cells (E. coli LW7 pLW11) compared to that produced using 

other techniques of AI-2 synthesis and delivery. * indicates significant difference (p < 

0.01). 
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2.5 Discussion 

We have demonstrated magnetic nanofactories for the localized synthesis and delivery of 

the QS signaling molecule AI-2 to the surface of E. coli. Our magnetic nanofactories 

consist of E. coli AI-2 synthases, Pfs and LuxS, attached to nano-sized co-precipitates of 

chitosan-mag (Figure 2-2a). They possess the ability to manufacture AI-2 (via attached 

Pfs and LuxS; synthesis ability), to attach to the cell surface (via chitosan; cell capture 

ability) and to be directed and recovered in response to an external magnetic field (via 

magnetite; stimuli responsiveness). 

The biopolymer chitosan serves a dual role in the nanofactory viz. enabling cell 

capture and providing amine groups to attach Pfs and LuxS. This dual role is attributed to 

chitosan’s unique pH-dependent behavior, particularly the reversible protonation-

deprotonation of the amine-groups of chitosan. The decrease in the cell capture ability of 

chitosan-mag as the pH is increased above 6 (Figure 2-3) is due to the increased extent of 

amine deprotonation at pH values above their pKa (no net charge). For attaching QS 

enzymes, chitosan’s amine-groups should be in nucleophilic (neutral) form.  

We selected a pH of 6 for our work because at this pH there are sufficient 

deprotonated amines for enzyme assembly while retaining protonated amines needed for 

capture (Fig. 2-6a and 6b). Incidentally, as noted by capture efficiency experiments 

(Figure 2-6a and 6b) and enzyme loading experiments (Figure 2-4b) we have not 

exhausted the available amines from chitosan for either capture or enzyme loading. This 

may be advantageous should one need to assemble a cell-specific targeting moiety to the 

nanofactories.  



www.manaraa.com

 

 44 
 

The enzymes Pfs and LuxS contain activatable pro-tags at their C-termini. The 

pro-tag extends away from the active site of both enzymes and also provides tyrosine 

residues for the activation by tyrosinase hence facilitating the attachment of the enzymes 

to chitosan-mag with intact activity (due to the mild reaction conditions; Figure 2-4b). 

This report is the first demonstration of small molecule synthesis using enzymes with 

engineered pro-tags.  

The nanofactories with synthesis ability, cell capture ability and stimuli 

responsiveness are used to capture the strains E. coli ZK126 pLW11 (Figure 2-6a) and E. 

coli LW7 pLW11 (Figure 2-6b, 6e and 6f). The synthesis and delivery of AI-2 at the 

surface of the captured cells using the nanofactories results in increased AI-2 dependent 

β-galactosidase expression for both strains (Figure 2-6c and 6d). The use of nanofactories 

for the localized synthesis and delivery of AI-2 also produces an increase in AI-2 

dependent β-galactosidase expression when compared to other techniques of synthesis 

and delivery of AI-2 (Figure 2-6g) indicating the benefit of localized synthesis and 

delivery in producing increased AI-2 specific transcriptional response (β-galactosidase 

reporter expression). 

We believe our work is significant for the following reasons. Our technique of 

using magnetic nanofactories to locally synthesize and deliver signaling molecules to 

target cell surfaces is novel. The magnetic nanofactories have diverse, yet co-existent 

attributes of small molecule synthesis ability, cell capture ability and responsiveness to 

external magnetic fields which make them suitable for use in localized cell surface 

synthesis and delivery applications. The cell capture ability of the nanofactories is based 

on the simple, reversible pH-dependent properties of chitosan. While this charge based 
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capture of cells by chitosan is non-specific, specificity can be bestowed to the 

nanofactory by using an appropriate antibody to a particular region of the target cell. 

Standard amine-group chemistry of chitosan can be used to attach the antibody to the 

nanofactory. Further investigations on this aspect are currently in progress. An external 

(non-invasive) magnetic field is used to recover the nanofactories with attached cells and 

confine them to a specific location for further analysis. The increase in AI-2 specific 

transcriptional response (β-galactosidase reporter expression) particularly at earlier times 

(4- and 6- hour time-points) for both strains indicates functioning and programmable 

nanofactories that are successful in intercepting and modulating cell-cell communication.  

Thus we have a facile tool to modulate QS with a view to understanding and controlling 

QS-based phenomena such as biofilm formation, pathogenicity, and antibiotic resistance. 

Finally, we believe nanofactories offer many advantages relative to the localized delivery 

of small molecules, in that the molecule could eventually be synthesized and delivered at 

a site, at a prescribed concentration and time. 
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Chapter 3: AI-2 Biosynthesis Module in a Magnetic Nanofactory 
Alters Bacterial Response via Localized Synthesis and Delivery 
 

3.1 Abstract 

Nanofactories are nano-dimensioned and comprised of modules serving various functions 

that alter the response of targeted cells when deployed by locally synthesizing and 

delivering cargo to the surfaces of the targeted cells.  In its basic form, a nanofactory 

consists of a minimum of two functional modules: a cell capture module and a synthesis 

module.  In this work, magnetic nanofactories that alter the response of targeted bacteria 

by the localized synthesis and delivery of the ‘universal’ bacterial quorum sensing signal 

molecule autoinducer AI-2 are demonstrated.  The magnetic nanofactories consist of a 

cell capture module (chitosan-mag nanoparticles) and an AI-2 biosynthesis module that 

contains both AI-2 biosynthetic enzymes Pfs and LuxS on a fusion protein (His-LuxS-

Pfs-Tyr, HLPT) assembled together.  HLPT is hypothesized to be more efficient than its 

constituent enzymes (used separately) at conversion of the substrate SAH to product AI-2 

on account of the proximity of the two enzymes within the fusion protein.  HLPT is 

demonstrated to be more active than the constituent enzymes, Pfs and LuxS, over a wide 

range of experimental conditions.  The magnetic nanofactories (containing bound HLPT) 

are also demonstrated to be more active than free, unbound HLPT.  They are also shown 

to elicit an increased response in targeted Escherichia coli cells, due to the localized 

synthesis and delivery of AI-2, when compared to the response produced by the addition 

of AI-2 directly to the cells.  Studies investigating the universality of AI-2 and unraveling 

AI-2 based quorum sensing in bacteria using magnetic nanofactories are envisioned.  The 

prospects of using such multi-modular nanofactories in developing the next generation of 
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antimicrobials based on intercepting and interrupting quorum sensing based signaling are 

discussed. 

 

3.2 Introduction 

A key requisite in targeted delivery for biological applications is localizing the delivered 

cargo within a targeted region (usually cells or tissue).  This facilitates the specific effects 

of the delivered cargo within the target area and minimizes its non-specific effects 

elsewhere.  The most widely used techniques involve packaging the cargo in its final and 

active form within a delivery vehicle that transports the cargo to the target site.  A variety 

of delivery vehicles such as polymeric scaffolds, liposomes, nanoparticles or viral vectors 

have been investigated in the literature 108-110.  Other techniques of targeted delivery 

employ delivery of an inactive prodrug which is converted to its active form at the target 

site 111, 112.  We are investigating a fundamentally different approach that uses a 

nanofactory to locally synthesize and deliver active cargo from an added precursor at a 

target site.   

 As defined previously, a nanofactory is a nano-dimensioned factory that is 

comprised of a synthesis module and a cell capture module assembled together (Figure 3-

1) 73, 74.  When deployed, the nanofactories bind to the target cell surface via the cell 

capture module.  Upon addition of a precursor, the synthesis module locally synthesizes 

the active cargo at the surface of the target cell thereby localizing its effect within the 

targeted region.   
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Figure 3-1.  Using a nanofactory to alter cellular response via localized synthesis and 

delivery.  A nanofactory, which consists of a cell capture module and synthesis module 

assembled together, binds to targeted cells via the cell capture module and synthesizes the 

cargo to be delivered locally at the cell surface using the synthesis module, thereby 

altering its response. 
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The reasoning behind using a synthesis and delivery approach is that one can control the 

amount of cargo delivered to the target site by controlling the amount of added precursor 

and by doing so modulate the response of the targeted cells.  In theory, this concept of a 

two-module nanofactory can be extended to a multi-modular nanofactory where the 

added modules confer additional functions or features to the nanofactory which are end-

use specific. 

In our work we use magnetic nanofactories to locally synthesize and deliver the 

quorum sensing (QS) signal molecule autoinducer-2 (AI-2) to bacterial cell surfaces and 

investigate its effect on cellular response.  QS is a commonly observed phenomenon 

whereby bacteria coordinate their intra- or inter-species behavior via the production, 

secretion, sensing and uptake of small signal molecules called autoinducers 45, 113-115.  QS 

has been shown to play a role in coordinated bacterial response such as antibiotic 

production, biofilm formation, bioluminescence, competence and virulence 57, 116-118.  In 

E. coli, AI-2 is synthesized from the toxic metabolite S-adenosylhomocysteine (SAH) via 

a two-step enzymatic reaction involving the enzymes S-adenosylhomocysteine 

nucleosidase (Pfs) and S-ribosylhomocysteinase (LuxS) (Figure 3-2a) 66.  AI-2 based 

signaling has been observed in many Gram negative 119-121 and Gram positive bacteria 122, 

123 and is therefore referred to as the ‘universal’ signaling molecule.   

In this work, we extend the concepts demonstrated in our previous study using 

magnetic nanofactories 73 where the nanofactories comprised of purified Pfs and LuxS 

attached to separate chitosan-mag nanoparticles.  The Pfs nanofactories were then 

combined with LuxS nanofactories to create a suspension with AI-2 biosynthesis 

capability.  Here, we construct a plasmid that expresses the AI-2 biosynthesis module 
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which contains both Pfs and LuxS on a single fusion protein (His-LuxS-Pfs-Tyr: HLPT, 

Figure 3-2b).  By having the two enzymes adjacent to each other on a single fusion 

protein, we believe that we can minimize the time required for the products of the Pfs 

reaction to diffuse to the LuxS reaction sites.  At the same time, we believe that the 

creation of a fusion protein results in minimal loss of the intrinsic activities of the 

constituent enzymes (Pfs and LuxS) within the fusion protein.   

HLPT is then assembled onto the cell capture module, chitosan-mag, to create the 

magnetic nanofactories (Figure 3-2c).  Chitosan-mag contains the biopolymer chitosan 

co-precipitated with iron oxide (mag) nanoparticles 89, 90.  Chitosan is a positively 

charged amine-group containing polysaccharide and has been shown to attach to many 

Gram positive and Gram negative bacteria and confers the cell capture attribute to the 

nanofactory.  The positively charged amine groups of chitosan can bind to negatively 

charged bacterial cell surfaces (measured by their zeta potential).  The strength and 

reversibility of this interaction is described in detail in the literature 89, 90.  Mag confers 

the attribute of magnetic responsiveness to the nanofactory that allows them to be 

recovered in the presence of a magnetic field which is an added feature of the 

nanofactory.   

The magnetic nanofactories are deployed and attach to the surface of targeted E. 

coli cells via chitosan (Figure 3-2d).  Once attached, the nanofactories synthesize AI-2 

upon addition of the substrate SAH.   
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Figure 3-2.  Altering bacterial response using magnetic nanofactories.  a. Schematic 

depicting the biosynthesis of signal molecule AI-2 from substrate SAH in E. coli 

catalyzed by enzymes Pfs and LuxS.  b. Construction of plasmid pHLPT that expresses 

the AI-2 biosynthesis module on a single fusion protein, HLPT.  c. Assembly of the 

magnetic nanofactory (MNF-HLPT) by contacting the AI-2 biosynthesis module, HLPT, 

with the cell capture module, chitosan-mag.  d. Using the magnetic nanofactory to locally 

synthesize and deliver AI-2 at the target cell surface thereby altering cellular response.  
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The effect of the localized synthesis and delivery on AI-2 specific cellular 

response is investigated by relating the amount of AI-2 that is delivered to the target cell 

(outside the target cell) to the production of AI-2 specific β-galactosidase reporter (within 

the target cell).   

The specific aims of this work are to demonstrate construction of the AI-2 

biosynthesis module (HLPT); to test the activity of HLPT and compare it to that of the 

constituent enzymes, Pfs and LuxS, over a wide range of reaction conditions; to compare 

the activity of the magnetic nanofactory (containing bound HLPT) to that of free, 

unbound HLPT and finally to investigate the effect of localized synthesis and delivery of 

AI-2 via the magnetic nanofactories on cellular response and to compare it with that 

produced by the direct addition of AI-2 to the target cells. 

The emergence of antibiotic resistant microbial strains 71, 124 poses a constant 

threat to human health and places an emphasis on developing new approaches to tackle 

bacterial pathogenicity.  The interception and subsequent interruption of QS based 

signaling is believed to be important in the development of the next generation of 

antimicrobials.  Specifically, the downregulation of QS related cell functions associated 

with pathogenicity (e.g. pili formation) but not essential for a pathogen’s viability is 

believed to reduce selective pressure on the pathogen to produce antibiotic resistant 

strains 71.  A first step toward developing QS based antimicrobials involves 

understanding quantitatively the effect of a QS signals on bacterial response.  The 

magnetic nanofactories provide a means to do the same by controllably delivering AI-2 to 

the targeted bacteria.  
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3.3 Materials and Methods 

Chemicals 

Chitosan (medium molecular weight 200,000 g/mol), iron (II) chloride tetrahydrate 

(FeCl2.4H2O), iron (III) chloride hexahydrate (FeCl3.6H2O), isopropyl β-D-

thiogalactopyranoside (IPTG), phosphate buffered saline tablets (10 mM phosphate 

buffer, 2.7 mM KCl and 137 mM NaCl, pH 7.4), S-(5’-deoxyadenosin-5’)-L-

homocysteine (SAH), chloroform, sodium dodecyl sulfate salt (SDS, >98.5 %), o-

nitrophenyl-β-D-galactopyranoside (ONPG), 2-mercaptoethanol, imidazole and 5,5’-

Dithiobis (2-nitrobenzoic acid) (DTNB) were all purchased from Sigma Aldrich.  Glacial 

acetic acid (CH3COOH), ampicillin sodium salt, kanamycin, Tris, sodium carbonate 

(Na2CO3), dibasic sodium phosphate (Na2HPO4.7H2O), monobasic sodium phosphate 

(NaH2PO4.H2O), potassium chloride (KCl), magnesium sulfate (MgSO4.7H2O), 

hydrochloric acid (HCl), sodium hydroxide (NaOH) and sodium acetate trihydrate 

(CH3COONa.3H2O) were all purchased from Fisher Scientific.  Ammonium hydroxide 

(NH4OH) was purchased from J. T. Baker.  Bugbuster HT was purchased from Novagen 

and protein assay dye reagent concentrate was purchased from BioRad laboratories. 

 

Plasmid construction 

To construct the plasmid pTrcHis-LuxS-Pfs-Tyr (pHLPT) that expresses the AI-2 

biosynthesis module containing enzymes Pfs and LuxS as a fusion, the forward and 

reverse oligonucleotide primers listed in table 3-1 were used to amplify the luxS gene 

(609 bp) from plasmid pTrcHis-LuxS-Tyr 73.  The PCR reactions were carried out using 

Vent DNA polymerase (New England Biolabs; NEB).   
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Table 3-1.  List of bacterial strains, plasmids and primers used in this study. 
 

Strain, 
plasmid or 

primer 
Relevant genotype and/or property Reference 

Escherichia coli strains 
W3110 Wild type  Laboratory 

stock 
BL21 luxS- F’ ompT hsdSB (rB

-mB
-) gal dcm ∆luxS :: Kan  Laboratory 

Stock 
NC13 RK4353 Δpfs (8-226)::Kan 99 
DH5α recA1 supE44 endA1 hsdR17 gyrA96 relA1 thiΔ (lac-proAB) 

F' [traD36 proAB+ lacIq lacZΔM15] 
Invitrogen 

ZK126 Wild type strain derivative, W3110 ΔlacU160-tna2 98 
LW7 ZK126 ΔluxS :: Kan 66 

TOP10 F- mcrA Δ(mrr-hsdRMS-mcrBC) φ80lacZΔM15 ΔlacX74 
deoR nupG recA1 araD139 Δ(ara-leu)7697 galE15 galK16 
rpsL(StrR) endA1 λ-  

Invitrogen 

Vibrio harveyi strains 
BB170 BB120 luxN :: Tn5 (sensor 1-, sensor 2+) 100 

Plasmids 
pTrcHis-
LuxS-Tyr 

pTrcHisC derivative, W3110 luxS+, Ampr 73 

pTrcHis-
Pfs-Tyr 

pTrcHisC derivative, W3110 pfs+, Ampr 73 

pFZY1 galK’-lacZYA transcriptional fusion vector, Ampr 101 
pLW11 pFZY1 derivative, containing lsrACDBFG promoter region, 

Ampr 
66 

pCR-LuxS pCR-Blunt II-TOPO derivative, luxS+, Kanr This study 
pHLPT pTrcHisC derivative, W3110 pfs+, luxS+, Ampr This study 

Oligonucleotide primers 

Name Sequence Relevant property 

C1-5’ 5'- GGC TAG CAT GAC TGG TGG -3' 
Upstream primer for cloning 
luxS from pTrcHis-LuxS-Tyr, 
contains NheI 

C1-3’ 5'- TAG ATC TTT CGG CCG ATG 
TGC AGT TCC T -3' 

Downstream primer for 
cloning luxS from pTrcHis-
LuxS-Tyr, contains BglII 
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The 609 bp fragment containing luxS was isolated and purified using the QIAquick gel 

extraction kit (Qiagen).  The blunt end fragment was then inserted into pCR-Blunt II-

TOPO (Invitrogen).  The intermediate plasmid (pCR-LuxS) was transformed into the 

strain E. coli TOP10 (Invitrogen).  The integrity of the intermediate construct was 

verified by sequencing the plasmid at the DNA core facility at the Center for Biosystems 

Research, University of Maryland Biotechnology Institute.  The fragment containing luxS 

was extracted by digesting pCR-LuxS using the restriction endonucleases NheI and BglII 

(NEB), isolated and purified using the QIAquick gel extraction kit.  The purified 

fragment was then inserted into the destination vector pTrcHis-Pfs-Tyr , previously cut 

using the endonucleases NheI and BamHI, by ligation using the Quick ligation kit (NEB) 

to generate the final plasmid pHLPT.  pHLPT was transformed into the expression strain 

E. coli BL21 luxS- (a luxS knockout, table 3-1) and its integrity was verified by 

sequencing at the DNA core facility.  

 

Growth media 

The Luria-Bertani (LB) medium used for bacterial growth contains 5 g/L of yeast extract 

(Sigma), 10 g/L of Bacto tryptone (Difco) and 10 g/L NaCl (J. T. Baker).  The 

components of the Autoinducer Bioassay medium (AB) are described elsewhere 96. 

 

Expression and purification of His-LuxS-Pfs-Tyr (HLPT), Pfs and LuxS 

E. coli BL21 luxS- pHLPT was cultured at 37 oC and 250 rpm in LB medium 

supplemented with ampicillin at a concentration of 50 μg/mL.  When the optical density 

(OD600) of the cell culture was between 0.4 - 0.6, IPTG was added to induce fusion 
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protein, HLPT, production (final IPTG concentration used was 1 mM).  After a 6 hr 

induction period at the same culture conditions, the cells were harvested by centrifugation 

at 6,000 xg for 30 minutes at 4 oC.  The cells were stored at -20 oC or directly 

resuspended in the cell lysis reagent, Bugbuster HT.  The lysis reaction was allowed to 

proceed for 30 minutes at room temperature and 100 rpm.  After the said lysis time, the 

samples were centrifuged at 12000 xg at 4 oC for 20 minutes.  The clarified supernatant 

containing the overexpressed HLPT was contacted with TALON® metal affinity resin 

(Clontech) suspended in binding buffer (10 mM PO4
3- and 10 mM imidazole) for 30 

minutes at room temperature and 100 rpm.  The resin containing the bound HLPT was 

rinsed thrice with wash buffer (10 mM PO4
3-) and treated with the elution buffer (10 mM 

PO4
3- and 250 mM imidazole).  For complete elution, the resin was subjected to a second 

elution under identical conditions.  The eluted HLPT was desalted using Zeba desalt spin 

columns (Pierce Biotechnology) to remove excess salts in the buffer exchange mode 

(where the elution buffer was exchanged for 10 mM sodium phosphate buffer pH 6; 

PB6).  Prior to determining the concentration of HLPT, the samples were filtered using a 

0.22 μm polyether sulfone, low protein binding filter (Millipore).  The concentration of 

HLPT in 10 mM PB6 was quantified by measuring the absorbance of the samples at 280 

nm (OD280) and confirmed using the BioRad protein assay as per the manufacturer’s 

specifications (website: http://www.bio-rad.com).  For Pfs expression and purification, 

the cell strain E. coli DH5α carrying plasmid pTrcHis-Pfs-Tyr was used while for LuxS 

expression and purification, the cell strain E. coli NC13 carrying plasmid pTrcHis-LuxS-

Tyr was used under experimental conditions identical to those used for HLPT expression 

and purification described above. 
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Protein sizing and analysis assay using LabChip® 

The sizing and analysis of HLPT, Pfs and LuxS was performed using a LabChip® Protein 

200 plus kit (Agilent Technologies).  Briefly 1 μg each of purified HLPT (molecular 

weight 50093 Daltons), Pfs (molecular weight 29716 Daltons) and LuxS (molecular 

weight 24778 Daltons) were loaded per well in the chip and the assay was conducted 

according to the manufacturer’s specifications (website: http://www.chem.agilent.com). 

 

Synthesis of in vitro AI-2  

In vitro AI-2 was synthesized by adding 1 μM of the fusion protein, HLPT, to 100 μM of 

the substrate, SAH, in 10 mM PB6.  The reaction was carried out at 37 oC for 2 hours.  

After the said reaction time, the samples were withdrawn, chloroform was added to the 

samples to arrest the reaction and the samples were centrifuged at 14000 rpm on a 

benchtop centrifuge (Eppendorf 5417 C).  The aqueous supernatants containing in vitro 

AI-2 (in addition to enzymatic reaction byproducts and unreacted SAH) were collected 

and filtered through a 0.22 μm filter (Millipore).  The samples were either immediately 

quantified using the techniques for AI-2 activity estimation mentioned subsequently or 

stored at – 20 oC for up to a week until assayed.  As controls, 1 μM HLPT was replaced 

by equimolar amounts of Pfs and LuxS (1 μM Pfs and 1 μM LuxS), Pfs (1 μM) or LuxS 

(1 μM).  

 

Estimation of AI-2 activity (using the V. harveyi bioluminescence assay) 
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The estimation of AI-2 activity was performed by measuring the AI-2 dependent 

bioluminescence produced in the bacterial reporter V. harveyi as described elsewhere 107.  

Briefly, 20 μL of sample (collected during the above synthesis reactions) was added to 

180 μL of V. harveyi BB170 suspension prepared by 5000-fold dilution of an overnight 

culture of the same strain into fresh AB medium.  10 mM PB6 was used as the negative 

control and the cell-free supernatants obtained by centrifuging a 4 hr culture of the wild 

type strain E. coli W3110 grown in LB medium at 37 oC and 250 rpm (conditioned 

medium) was used as the positive control.  The bioluminescence produced in the reporter 

was measured for all samples.  AI-2 activity in a given sample was calculated by dividing 

the bioluminescence produced by a given sample by that produced in the negative control 

under identical reaction conditions.  To verify reproducibility of the results, each sample 

type was analyzed by using at least three separately prepared experimental replicates (n ≥ 

3). 

 

Estimation of AI-2 concentration (by quantification of free thiols using DTNB) 

The reaction catalyzed by LuxS results in the formation of equimolar amounts of AI-2 

and homocysteine 56, 125.  Therefore, the concentration of AI-2 can be equated to the 

concentration of homocysteine generated in the AI-2 synthesis reaction which can be 

estimated by its free thiol group (-SH).  To estimate homocysteine, 100 μL of sample 

collected above was added to DTNB reagent (100 μM DTNB, 2.5 mM sodium acetate in 

0.1 M Tris buffer, pH 8).  The reaction was carried out at room temperature for at least 15 

minutes.  After the reaction, the absorbance at 412 nm (OD412) was measured and the 

concentration of homocysteine calculated using molar extinction coefficient (13600 M-1 
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cm-1) of the reaction product 5-thio-2-nitrobenzoic acid (TNB) 126.  Each sample type had 

at least three separately prepared experimental replicates (n ≥ 3). 

 

Effect of synthesis time and temperature on AI-2 concentration 

To investigate the effect of synthesis time on the AI-2 generation, samples containing 1 

μM HLPT and 100 μM SAH in 10 mM PB6 were incubated at 37 oC.  At various 

synthesis times (t = ½ hr, 1 hr, 2 hr and 4 hr), aliquots of sample were withdrawn, 

processed and the concentration of AI-2 estimated using DTNB as described above.  For 

controls, HLPT was replaced by equimolar amounts of Pfs and LuxS (1 μM Pfs and 1 μM 

LuxS), Pfs (1 μM) or LuxS (1 μM). 

 To investigate the effect of synthesis temperature, samples containing 1 μM 

HLPT and 100 μM SAH in 10 mM PB6 were incubated at various temperatures (4 oC, 

room temperature, 30 oC, 37 oC) for two hours.  Controls identical to earlier experiments 

were also performed.  After the said reaction time, the samples were withdrawn, 

processed and estimated as described above.  

 

Preparation of chitosan-mag nanoparticles 

Chitosan-mag was prepared as described in our previous study 73.  Briefly, 20 mL of a 

reaction mixture (previously purged with nitrogen to removed dissolved oxygen) 

consisting of 13.5 mM Fe2+, 27 mM Fe3+ ([Fe3+]/[Fe2+]  = 2) and 1 % chitosan  (reaction 

mixture pH 0.5) was added dropwise to 2 M  NH4OH (also previously purged with 

nitrogen, pH 11) which was vigorously stirred.  The resultant black precipitate was 

collected by decanting the supernatant and was washed with copious amounts of de-
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ionized water to wash off the excess base.  After washing, the pH of the solution was 

lowered to a neutral pH using 0.5 % acetic acid.  The precipitate was collected by 

centrifuging at 12000 xg for 10 minutes and resuspended in 0.5 % acetic acid.  To break 

up any aggregates formed during the synthesis reaction, the suspension was sonicated for 

30 minutes using Sonic Dismembrator 550 (Fisher Scientific).  The resulting suspension 

containing chitosan-mag nanoparticles was filtered through a 0.22 μm filter to sterilize 

the particles for use with bacterial cells and the concentration (mg/mL) of the suspension 

estimated.  Chitosan-mag was also prepared by varying the proportions of chitosan and 

iron salts used in the synthesis reaction and it resulted in chitosan-mag nanoparticles of 

varying accessible surface amine concentrations. 

 

Assembly of the magnetic nanofactories 

The magnetic nanofactories consist of an AI-2 biosynthesis module (HLPT) and an E. 

coli binding module (chitosan-mag).  HLPT and chitosan-mag were prepared as 

described earlier.  To assemble the nanofactories, a solution containing 1 μM HLPT and 

1 mg/mL chitosan-mag in 10 mM PB6 was incubated at 30 oC for 1 hour.  HLPT adsorbs 

on to chitosan-mag thereby combining the AI-2 biosynthesis and cell capture modules 

forming the nanofactory, MNF-HLPT.  MNF-HLPT was also made by varying the ratio 

of HLPT to chitosan-mag. 

 

Comparing the activities of the magnetic nanofactories and free enzymes 

To test MNF-HLPT, for its AI-2 synthesis capability, MNF-HLPT was incubated with 

the substrate SAH.  MNF-HLPT used contained 0.25 mg/mL chitosan-mag and 0.25 μM 
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assembled HLPT and was incubated with 250 μM SAH in 10 mM PB6 at 30 oC for 2 

hours.  After the said reaction period, the particles were collected with a magnetic stand 

(Promega MagneSphere® stand Z5342).  When needed, 1 M NaOH was added to the 

sample to assist in the particle precipitation.  The supernatants were collected, treated 

with chloroform to arrest the reaction and the AI-2 concentration was estimated as 

described earlier.  The performance of MNF-HLPT was compared with that of an 

equimolar amount of free (unbound) HLPT at reaction conditions identical to those used 

for MNF-HLPT. 

 

Altering cellular response via localized synthesis and delivery of AI-2 using the 

magnetic nanofactories 

E. coli LW7 pLW11 (lac- luxS-, AI-2 responsive lsr-lacZ on pLW11) was pre-cultured 

overnight at 37 oC and 250 rpm in LB medium supplemented with ampicillin at a 

concentration of 100 μg/mL.  0.5 mL of the overnight culture was added to 49.5 mL fresh 

LB medium supplemented with 60 μg/mL ampicillin.  The culture was grown at 30 oC 

and 250 rpm for 7 hours.  After the said growth period, the cells were withdrawn and 

recovered by spinning at 12000 xg for 5 minutes.  A suspension of the cell strain in 10 

mM PB6 was prepared.   

The magnetic nanofactories were assembled as described above.  After assembly 

0.5 mL of the magnetic nanofactories (MNF-HLPT: 4 μM HLPT attached to 1 mg/mL 

chitosan-mag in 10 mM PB6) was added to 0.5 mL of the E. coli LW7 pLW11 

suspension.  Cell capture was carried out for 30 minutes at room temperature.  The 

nanofactories with the bound cells were recovered by using the magnetic stand and 
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resuspended in 0.5 mL 10 mM PB6.  The amount of bound cells was estimated by 

measuring the optical density (OD600) of the cell suspension before capture and of the 

supernatant after capture (ODbound cells = OD600,cell suspension – OD600,supernatant).   

The above solution was added to SAH (final concentration 0.5 mM SAH in 10 

mM PB6) and the samples were incubated at 37 oC for 2 hours.  After the reaction, the 

nanofactories with the bound cells were recovered with a magnetic stand.  The 

supernatants (containing AI-2) were collected and the amount of AI-2 delivered to the 

cells by the nanofactories was estimated using the method described above (using 

DTNB).  A Miller assay 102 was performed to determine the AI-2 dependent β-

galactosidase expression of the cells captured by the nanofactories.  The AI-2 dependent 

β-galactosidase expression produced by MNF-HLPT was compared with that produced 

by the direct addition of in vitro AI-2 (150 μM) to the cells, cells captured by chitosan-

mag only (hence no AI-2) and that of free cells (no AI-2), all treated identically.  

 

3.4 Results 

Construction of the AI-2 biosynthesis module (HLPT) 

We constructed plasmid pHLPT to expresses the AI-2 biosynthesis module on a single 

fusion protein (plasmid map, Figure 3-3a).  When induced, pHLPT expresses fusion 

protein His-LuxS-Pfs-Tyr (HLPT), which contains both the AI-2 biosynthesis enzymes 

Pfs and LuxS.  HLPT possesses the ability to synthesize the signal molecule AI-2 upon 

addition of the substrate SAH.  The fusion protein was purified using immobilized metal 

ion affinity chromatography and analyzed for its size using LabChip®.  Purified HLPT 

possesses the correct size (50093 Da) calculated from the primary amino acid sequence 
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of the protein.  The size of HLPT is shown in relation to that of its constituent enzymes 

Pfs (29716 Da) and LuxS (24778 Da) in Figure 3-3b.        

 

Testing the activity of HLPT 

In vitro AI-2 was synthesized by adding HLPT to substrate SAH (synthesis time = 2 

hours, temperature = 37 oC).  Controls using Pfs and LuxS were performed as described 

earlier.  The reaction products were analyzed either for their AI-2 activity using the V. 

harveyi bioluminescence assay or for their AI-2 concentration by quantification of free 

thiols using DTNB.  Figure 3-4a shows that HLPT produces higher AI-2 activity in the 

reporter strain as compared to the controls.  Figure 3-4b shows that the homocysteine 

concentration (hence AI-2 concentration) is the highest when using HLPT.  Taken 

together, the results in Figure 3-4 indicate that the AI-2 biosynthesis module (HLPT) 

produces the highest conversion of substrate SAH to product AI-2 (+homocysteine) 

under the stated reaction conditions.   
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Figure 3-3.  Construction and expression of HLPT.  a. Plasmid map depicting the 

features of the plasmid pHLPT that expresses the fusion protein HLPT.  b. Analysis of 

HLPT using LabChip®.  HLPT predicted theoretical molecular weight is 50093 Da, Pfs 

molecular weight is 29716 Da and LuxS molecular weight is 24778 Da. 
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Figure 3-4.  Testing the activity of HLPT and comparing it to equimolar amounts of Pfs 

and LuxS, Pfs only and LuxS only using the a. V. harveyi bioluminescence assay and b. 

free thiol quantification via DTNB. 
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Investigating the effect of synthesis time and temperature on the activity of HLPT 

Figure 3-5 shows the effect of synthesis time and synthesis temperature on product 

formation.  Figure 3-5a shows that HLPT produces higher concentrations of AI-2 than 

equimolar amounts of Pfs and LuxS over the entire time period investigated (4 hours at 

37 oC).  The ratio of average concentration of AI-2 produced using HLPT to that 

produced using Pfs and LuxS is higher initially (t = 30 minutes) and decreases as time 

proceeds (t = 30 minutes, ratio = 1.6; t = 1 hour, ratio = 1.5; t = 2 hours, ratio = 1.4 and t 

= 4 hours, ratio = 1.2).  Figure 3-5b shows that HLPT produces higher concentrations of 

AI-2 than equimolar amounts of Pfs and LuxS over the synthesis temperatures 

investigated (T = 4 oC, Room temperature 23 oC, 30 oC and 37 oC, t = 2 hours).  A similar 

trend was observed where the ratio of average concentration of AI-2 produced using 

HLPT to that produced using Pfs and LuxS is higher at a lower temperature (T = 4 oC) 

and decreases as with increasing temperature (T = 4 oC, ratio = 4.9; T = 23 oC, ratio = 

2.7; T = 30 oC, ratio = 2.1 and T =  37 oC, ratio = 1.6).  Taken together, Figure 3-5 

indicates that HLPT produces the highest conversion of substrate (SAH) to product (AI-2 

+ homocysteine) over a wide range of reaction conditions.  We therefore select HLPT for 

future experiments as it has higher activity (produces higher concentrations of AI-2) than 

Pfs and LuxS under the experimental conditions used. 

  

Comparing the activity of the magnetic nanofactory, MNF-HLPT, to free HLPT 

As noted earlier, HLPT adsorbs onto chitosan-mag forming MNF-HLPT.  In vitro AI-2 

was synthesized using either MNF-HLPT or equimolar amounts of free HLPT (2 hours, 

30 oC).   
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Figure 3-5.  Comparing the activity of HLPT to equimolar amounts of Pfs and LuxS, Pfs 

only and LuxS only as a function of a. synthesis time (maintaining a constant reaction 

temperature of 37 oC) and b. synthesis temperature (maintaining a constant reaction time 

of 2 hours) . 
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Figure 3-6 shows that MNF-HLPT produces higher concentrations of AI-2 than 

free HLPT under the stated reaction conditions (ratio = 1.6).  The result indicates that 

enzyme immobilization resulted in higher enzymatic activity under the reaction 

conditions used.  We therefore use MNF-HLPT in future experiments to deliver AI-2 to 

targeted E. coli cells.    

 

Altering cellular response via localized synthesis and delivery of AI-2 using MNF-

HLPT 

MNF-HLPT was added to a suspension of the reporter strain E. coli LW7 pLW11 (lac- 

luxS-, AI-2 responsive lsr-lacZ on pLW11).  MNF-HLPT locally synthesizes and delivers 

AI-2 at the surface of the reporter cell upon addition of substrate SAH.  The local AI-2 is 

taken up by the reporter and induces plasmid pLW11 to produce AI-2-dependent β-

galactosidase which is measured by a Miller assay.   

The response produced by MNF-HLPT in the reporter was compared to that 

produced by direct addition of in vitro AI-2 (10 fold higher concentration, synthesized 

previously) and controls without any added or intrinsic AI-2 (chitosan-mag and free 

cells).  Figure 3-7a shows the concentrations of AI-2 delivered to the cells and Figure 3-

7b shows the resultant AI-2-dependent response (β-galactosidase production).  The direct 

addition of AI-2 (150 μM) to the cells results in a response that is 1.4 times (36 Miller 

units) that of the native response of the cells (no AI-2, 27 Miller units).  However MNF-

HLPT (15 μM AI-2, 60 Miller units) elicits a response that is 2.5 times that produced in 

cells attached by chitosan-mag only (no AI-2, 23 Miller units), 2.2 times that produced by 

the native response of the cells (no AI-2, 27 Miller units) and 1.7 times that produced by  
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Figure 3-6.  Comparing the activity of the magnetic nanofactories, MNF-HLPT, to 

equimolar amounts of free, unbound HLPT. 



www.manaraa.com

 

 70 
 

0

40

80

120

160

MNF-
HLPT

Chitosan-
mag

Added
AI-2

Free
Cells

A
I-2

 C
on

ce
nt

ra
tio

n 
( μ

M
) a

0

40

80

120

160

MNF-
HLPT

Chitosan-
mag

Added
AI-2

Free
Cells

A
I-2

 C
on

ce
nt

ra
tio

n 
( μ

M
) a

 

0

10

20

30

40

50

60

70

80

MNF-
HLPT

Chitosan-
mag

Added
AI-2

Free
Cells

-G
al

ac
to

si
da

se
 A

ct
iv

ity
(M

ill
er

 U
ni

ts
)

b

β

0

10

20

30

40

50

60

70

80

MNF-
HLPT

Chitosan-
mag

Added
AI-2

Free
Cells

-G
al

ac
to

si
da

se
 A

ct
iv

ity
(M

ill
er

 U
ni

ts
)

b

β

 

 

Figure 3-7.  Altering AI-2-dependent β-galactosidase production in reporter E. coli LW7 

pLW11 using magnetic nanofactories.  Comparing the response produced by MNF-HLPT 

to that produced by cells attached to chitosan-mag only (chitosan-mag), by direct addition 

of 10 times the AI-2 concentration (added AI-2) and by unattached cells (free cells, 

native response).  a. AI-2 delivered to the reporter cells by the various samples.  b.  AI-2-

dependent β-galactosidase (Miller units) produced by the various samples.   
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direction addition of AI-2 to the cells (150  μM AI-2, 10 times the AI-2 delivered by 

MNF-HLPT, 36 Miller units).   

Taken together, Figure 3-7 indicates that localized synthesis and delivery of AI-2 

using MNF-HLPT results in altered (increased) AI-2-dependent response in targeted cells 

as compared to controls and that the response is higher than that produced by direct 

addition of 10 times the amount of AI-2 under the stated experimental conditions.  

 

3.5 Discussion 

Plasmid pHLPT expresses the AI-2 biosynthesis module HLPT (Figure 3-3) which was 

demonstrated to have higher activity than equimolar amounts of the constituent enzymes 

Pfs and LuxS over a wide range of reaction times and temperatures (Figures 3-4 and 3-5).  

We believe the reason for this is that the proximity of the two enzymes in the fusion 

protein decreases the path length for the diffusion of the reaction products of the Pfs 

reaction to the sites of the LuxS reaction.  The catalytic turnover number of Pfs 127 has 

been shown to be higher than that of LuxS 128, 129 and hence over time, there will be 

accumulation of the Pfs reaction products (SRH and adenine) as the LuxS reaction 

becomes limiting.  Also because diffusion is temperature-dependent 130, an increased 

temperature causes faster diffusion and consequently an accumulation of the Pfs reaction 

products if the LuxS reaction does proceed fast enough.   

Evidence to support this assertion of an activity advantage due to proximity 

effects was provided by the fact that as synthesis times were increased, the ratio of the 

activity of the fusion protein to that of the constituent enzymes was found to decrease 

(from a ratio of 1.6 at 30 minutes to 1.2 at 4 hours). Also, as the synthesis temperature 
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was increased, the observed trends were similar (activity ratio decreasing from 4.9 at 4 oC 

to 1.6 at 37 oC).  Calculation of the diffusion path length between the site of the Pfs 

reaction and that of the LuxS reaction (i.e. the proximity advantage) as well as 

quantification of the concentrations of the intermediate products of the reactions was not 

investigated.  These parameters will be investigated in a more rigorous manner in a 

microfluidics device 131 where reaction temperatures and times can be precisely 

controlled.  

A second advantage of the using HLPT is that the creation of the fusion does not 

cause any apparent loss in the intrinsic activities of the constituent enzymes.  The 

enzymes were observed to remain stable over the investigated experimental time-scales; 

stability over longer time scales was not investigated.   

MNF-HLPT was seen to have higher activity than the free, unbound HLPT.  This 

indicates that the immobilization of HLPT onto chitosan-mag seems to either stabilize the 

fusion protein or inhibit the effects that cause a loss of enzyme activity.  MNF-HLPT 

elicited a higher AI-2-dependent response in reporter E. coli LW7 pLW11 as compared to 

controls where no AI-2 was added (chitosan-mag and free cells).  MNF-HLPT was also 

demonstrated to produce a higher response than the addition of 10 times the 

concentration of AI-2 directly to the cells.  We believe that this is because the cells 

experience a localized high concentration of AI-2 when using MNF-HLPT which is more 

effective at eliciting a response than using a global high concentration via the direction 

addition of AI-2 to the cells. 
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3.6 Conclusions 

We have demonstrated a multi-modular magnetic nanofactory for the localized synthesis 

and delivery of the ‘universal’ signal molecule AI-2 to targeted bacteria.  The 

nanofactories comprised of an AI-2 biosynthesis module adsorbed onto a cell capture 

module with magnetic responsiveness (chitosan-mag).  The AI-2 biosynthesis module, 

HLPT, expresses the enzymes Pfs and LuxS on a single fusion protein and was shown to 

be more active than Pfs and LuxS over a wide range of experimental conditions.  The 

magnetic nanofactory, MNF-HLPT, was shown to be more active than the free enzyme 

and also shown to alter (increase) AI-2 specific cellular response in targeted cells due to a 

localized high concentration of AI-2. 

 We believe that this work is significant for the following reasons. The work 

demonstrates the expression of enzymes of a signaling pathway on a single, active fusion 

protein and its assembly on a magnetic nanoparticle in the form of a magnetic 

nanofactory.  Creation of this fusion protein greatly aids in protein purification and has 

concomitant advantages with respect to enzymatic activity over a wide range of 

experimental conditions.  Even though we do not currently know the exact surface 

concentrations of the signal molecule, the magnetic nanofactory provides a facile tool to 

locally (and more effectively) deliver the signal molecules to the target cells in a 

quantitative manner (on a global scale).  Further experiments conducted on the 

intracellular targets of AI-2 in E. coli as well as other QS bacteria will help 

(quantitatively) elucidate the mechanisms of AI-2 based signaling in bacteria as well as 

test the universality of AI-2.  The results of these studies will also enable us to create 

magnetic nanofactories that contain different synthesis modules, including those that may 
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intercept and interrupt QS signaling by degrading AI-2 thereby downregulating or 

‘switching off’ AI-2 based responses. 
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Chapter 4: Antibody Nanofactories: Probing Bacterial 
Communication by Localized Synthesis and Delivery of 
Autoinducer-2 
 

4.1 Abstract 

Biological nanofactories are bio-inspired and comprised of multiple functional modules.  

Biological nanofactories locally synthesize and deliver molecules-of-interest at the 

surface of cells they target, thereby altering their native response.  Here we demonstrate 

antibody nanofactories as a method to alter the native quorum sensing response of 

bacterial cells via localized synthesis and delivery of the universal bacterial quorum 

sensing signaling molecule, autoinducer-2 (AI-2).  Quorum sensing has been shown to 

play a role in intra- and inter-species bacterial communication, as well as in bacterial 

interaction with eukaryotes.  The antibody nanofactory described here combines the 

exquisite targeting capabilities of an antibody with the AI-2 synthesis capabilities of a 

fusion protein.  The fusion protein His-Protein G-LuxS-Pfs-Tyr, HGLPT, contains 

Protein G and the E. coli AI-2 biosynthetic enzymes Pfs and LuxS.  Upon mixing of the 

targeting antibody with the fusion protein HGLPT, the antibody nanofactory self-

assembles when HGLPT attaches to the Fc region of the antibody via Protein G.  The 

nanofactories are shown to alter the native phenotype of targeted Escherichia coli and 

Salmonella typhimurium cells by locally synthesizing and delivering AI-2 at the surface 

of the targeted cells.  Selective delivery of quorum sensing signals via antibody 

nanofactories is envisaged to play an important role in the creation of the next generation 

of antimicrobials based on altering (turning up or turning down) native quorum sensing 

based response. 
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4.2 Introduction 

Biological nanofactories alter the native response of cells they target by locally 

synthesizing and delivering molecules-of-interest (signal molecules, growth factors or 

drugs) at the surface of the targeted cells 73, 74.  Biological nanofactories are bio-inspired 

in that the mechanism for synthesis and delivery of the molecule-of-interest is usually a 

natural biological synthesis pathway taken and reconstructed in vitro.  Biological 

nanofactories comprise multiple functional modules and in their most basic form consist 

of two modules: a targeting module and a synthesis module.  In this work, we 

demonstrate antibody nanofactories, bi-modular biological nanofactories, for the 

synthesis and delivery of the universal bacterial signaling molecule autoinducer-2 (AI-2). 

 Quorum sensing (QS) is a phenomenon by which bacteria exchange small 

chemical signals known as autoinducers and co-ordinate their activities in a population 

density dependent manner 44, 132, 133.  A wide range of bacterial phenomena such as 

bioluminescence 56, 57, biofilm formation 58, 59, virulence 46, 60, sporulation 61, swarming 

motility 62 etc are in part QS regulated.  QS has been shown to play a role in both intra-

species and inter-species bacterial communication 44, 45.  Emerging research also 

implicates QS a means for bacteria to interact directly with eukaryotes via their 

autoinducers 44.  Of the various classes of signaling autoinducers, AI-2 is particularly 

interesting as the AI-2 synthase has been found in over 70 bacterial species.  Further, 

bacteria that do not possess their own AI-2 synthesis machinery have been observed to 

respond to AI-2 70, 134.  Hence AI-2 has been referred to as the ‘universal’ bacterial 

signaling molecule 71.  While the mechanism for AI-2 synthesis, secretion, sensing and 

uptake has been described in some bacteria, little is known about the exact role of this 
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elaborate signaling mechanism.  One step toward understanding this is to create a method 

to selectively deliver AI-2 to targeted bacteria and observe the effect of the same on their 

response (phenotype).   

In this work, we create a method to selectively deliver AI-2 to targeted bacteria 

using antibody nanofactories (Figure 4-1a).  An antibody nanofactory consists of a 

bacterium targeting module (an antibody) and a synthesis module (fusion protein His-

Protein G-LuxS-Pfs-Tyr, HGLPT) that self assemble (Figure 4-1b).  Fusion protein 

HGLPT expresses Protein G, the AI-2 biosynthesis enzymes S-adenosylhomocysteine 

nucleosidase, Pfs and S-riboysl homocysteinase, LuxS and a N-terminal hexahistidine tag 

and a C-terminal pentatyrosine tag (providing flexibility for covalent conjugation of the 

fusion protein to amine-groups).  Protein G is derived from group C and G Streptococcus   

strains and binds to the Fc region of numerous immunogloblulins 135, 136.  Protein G in 

HGLPT facilitates binding of HGLPT to the Fc region of the targeting antibody.  

Enzymes Pfs and LuxS are derived from Escherichia coli where they are part of the 

activated methyl cycle and convert toxic metabolite S-adenosylhomocysteine (SAH) to 

4,5-dihydroxy-2,3-pentanedione (DPD) which spontaneously converts to AI-2 44, 66.   

When HGLPT and the antibody are mixed in solution, HGLPT binds to the Fc 

region of the targeting antibody.  The resulting self-assembled macromolecule consisting 

of proteins is called an antibody nanofactory and contains both modules: antibody and 

HGLPT.  The antibody nanofactories (Ab-NF) are added to targeted cells and they bind 

to the targeted cell surface via the antibody.  Upon addition of the substrate SAH, Ab-NF 

synthesizes AI-2 at the target cell surface.  This locally synthesized AI-2 is sensed by the 

cell and taken up and produces an AI-2 dependent response which is measured. 
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Figure 4-1.  Scheme for the localized synthesis and delivery of autoinducer-2 to targeted 

bacteria using an antibody nanofactory (Ab-NF).  a. Self assembly of Ab-NF, which 

consists of the antibody and fusion protein HGLPT and targeting of bacteria using Ab-

NF. Addition of metabolite SAH results in cell surface synthesis and delivery of AI-2 by 

the Ab-NF.  The cells uptake the localized AI-2 and produce an AI-2 dependent response.  

b. Components of an Ab-NF; antibody for targeting and fusion enzyme HGLPT that 

contains Protein G for attaching to the antibody and E. coli AI-2 synthesis enzymes Pfs 

and LuxS. 
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In this study, we demonstrate construction, expression and purification of the 

fusion protein HGLPT.  Subsequently, we prepare Ab-NF and compare the activities of 

the nanofactory to HGLPT over a range of synthesis conditions.  The ability of Ab-NF to 

bind the target cell is investigated using microscopy.  Ab-NF is then added to cultures of 

E. coli, and the effect of localized synthesis and delivery on cellular response is measured 

(AI-2 dependent β-galactosidase production).  Finally Ab-NF, which contains E. coli Pfs 

and LuxS, is added to cultures of S. typhimurium.  The effect of this E. coli Ab-NF on AI-

2 specific S. typhimurium response is measured (once again, AI-2 dependent β-

galactosidase production). 

The emergence of bacterial strains that are resistant to antibiotics, such as 

methicillin resistant Staphylococcus aureus 137, 138 has necessitated alternative approaches 

to combating bacterial resistance.  While AI-2 has been found to increase QS response in 

gut bacteria such as E. coli and S. typhimurium 139, 140, it has also been found to decrease 

or delay QS response in pathogenic bacteria such as Vibrio cholerae 46, 141 and Bacillus 

cereus 122, 142.  Quorum sensing inhibition based on selective delivery of AI-2 to bacteria 

to terminate its QS response holds promise for the development of the next generation of 

antimicrobials.  Such methods are also believed to apply less selective pressure on the 

organisms to develop resistance as they do not target processes vital to the organism’s 

viability 71. 

 

 
 
 
 



www.manaraa.com

 

 80 
 

4.3 Materials and Methods 

Chemicals 

Isopropyl β-D-thiogalactopyranoside (IPTG), phosphate buffered saline tablets (10 mM 

phosphate buffer, 2.7 mM KCl and 137 mM NaCl, pH 7.4), S-(5’-deoxyadenosin-5’)-L-

homocysteine (SAH), chloroform, sodium dodecyl sulfate salt (SDS, >98.5 %), o-

nitrophenyl-β-D-galactopyranoside (ONPG), 2-mercaptoethanol, imidazole, albumin 

from bovine serum (BSA) and 5,5’-Dithiobis (2-nitrobenzoic acid) (DTNB) were 

purchased from Sigma Aldrich.  Ampicillin sodium salt, kanamycin, Tris, sodium 

carbonate (Na2CO3), dibasic sodium phosphate (Na2HPO4.7H2O), monobasic sodium 

phosphate (NaH2PO4.H2O), potassium chloride (KCl), magnesium sulfate (MgSO4.7H2O) 

and sodium acetate trihydrate (CH3COONa.3H2O) were purchased from Fisher 

Scientific.  Texas Red-X succinimidyl esters, mixed isomers (excitation wavelength peak 

595 nm and emission wavelength peak 615 nm) and Fluoreporter FITC (excitation 

wavelength peak 494 nm and emission wavelength peak 518 nm) protein labeling kit 

were purchased from Invitrogen. 

 

Antibodies 

Polyclonal rabbit anti Escherichia coli was purchased from AbD Serotec and polyclonal 

rabbit anti Salmonella typhimurium was purchased from Abcam.   

 

Plasmid pHGLPT construction 

Plasmid pTrcHis-G-LuxS-Pfs-Tyr (pHGLPT) expresses HGLPT, the fusion protein 

containing the AI-2 synthesis enzymes Pfs and LuxS (from E. coli) and Protein G (from 
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Streptococcus). To construct pHGLPT, the forward and reverse oligonucleotide primers 

listed in table 4-1 were used to amplify the Protein G gene (329 bp) from plasmid pET-

E73-G3 143.  The PCR reactions were carried out using AccuPrime Taq High Fidelity 

polymerase (Invitrogen).  The 329 bp fragment containing Protein G was isolated and 

purified using the QIAquick gel extraction kit (Qiagen).  The PCR fragment was digested 

using the restriction endonucleases, NcoI and NheI (New England Biolab, NEB).  The 

purified fragment was inserted into the destination vector pHLPT 144, previously cut 

using NcoI and NheI, and ligated using the Quick ligation kit (NEB) generating the final 

plasmid pHGLPT.  The plasmid integrity was verified by sequencing at the DNA core 

facility at the Center for Biosystems Research, University of Maryland Biotechnology 

Institute.  Once the correct sequence was verified, pHGLPT transformed into the 

expression strain E. coli BL21 luxS- (a luxS knockout, table 4-1). 

 

Bacterial strains and growth conditions 

Table 4-1 lists the bacterial strains and plasmids used in this study.  E. coli W3110, E. 

coli BL21 luxS- carrying plasmid pHGLPT, E. coli LW7 carrying plasmid pLW11 and S. 

typhimurium MET715 were all grown in Luria-Bertani (LB) medium at 37 oC with 

vigorous shaking (250 rpm) unless otherwise noted.  The Luria-Bertani (LB) medium 

used for bacterial growth contains 5 g/L of yeast extract (Sigma), 10 g/L of Bacto 

tryptone (Difco) and 10 g/L NaCl (J. T. Baker). Antibiotic concentrations used for the 

different strains, unless otherwise noted, were 50 μg/mL ampicillin for E. coli BL21 

luxS-, 100 μg/mL ampicillin for E. coli LW7 and 100 μg/mL kanamycin for S. 

typhimurium MET715. 
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Table 4-1.  List of bacterial strains, plasmids and primers used in this study. 
 

Strain, 
plasmid or 

primer 
Relevant genotype and/or property Reference 

Escherichia coli strains 
W3110 Wild type  Laboratory 

stock 
BL21 luxS- F’ ompT hsdSB (rB

-mB
-) gal dcm ∆luxS :: Kan  Laboratory 

Stock 
LW7 W3110 ΔlacU160-tna2 ΔluxS :: Kan Wang et 

al.66 
Salmonella typhimurium strains 

MET715 rpsl putRA :: Kan-lsr-lacZYA luxS :: T-POP Taga et 
al.67 

Plasmids 
pLW11 galK’-lacZYA transcriptional fusion vector, containing 

lsrACDBFG promoter region, Ampr 
Wang et 

al.66 
pET-E72-

G32 
pET derivative, expressing fusion protein E72G3 Tanaka et 

al.143 
pHGLPT pTrcHisC derivative, Escherichia coli W3110 pfs+, luxS+, 

Streptococcus Protein G+, Ampr 
This study 

Oligonucleotide primers 
Name Sequence Relevant property 

C1 Seq 5’ 5'- GGG CAC TCG ACC GGA A-3' 
Upstream primer for cloning 
Protein G from pET-E72-G3, 
contains NcoI 

C4-3’ 5'- CCA CCA GTC ATG CTA GCC 
GGG TCC ATT TCC GT -3' 

Downstream primer for 
cloning Protein G from pET-
E72-G3, contains NheI 
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Expression, purification and analysis of HGLPT 

E. coli BL21 luxS- pHGLPT was cultured at 37 oC and 250 rpm in LB medium 

supplemented with ampicillin at a concentration of 50 μg/mL.  When the optical density 

(OD600) of the cell culture was between 0.4 - 0.6, IPTG was added to induce over 

expression of HGLPT (final IPTG concentration used was 1 mM).  After a 6 hr induction 

period at the same culture conditions, the cells were harvested by centrifugation at 12,000 

xg for 15 minutes at 4 oC.  The cells were stored at -20 oC or directly resuspended in PBS 

+ 10 mM imidazole.  The resuspended cells were lysed by sonication using Sonic 

Dismembrator 550 (Fisher Scientific).  After sonication, the soluble cell extract was 

collected by centrifugation at 14,000 xg for 15 minutes at 4 oC, filtered using a 0.22 μm 

polyether sulfone, low protein binding filter (Millipore) and then loaded on a pre-

equilibrated immobilized metal-ion affinity chromatography (IMAC) column (HiTrap 

Chelating HP, GE Healthcare Life Sciences).  After washing with varying amounts of 

phosphate buffer, sodium chloride and imidazole (Wash 1: 20 mM PO4
3-, 250 mM NaCl 

and 10 mM imidazole; Wash 2: 20 mM PO4
3-, 250 mM NaCl and 50 mM imidazole), 

HGLPT was eluted with 20 mM PO4
3-, 250 mM NaCl and 350 mM imidazole.  The 

protein was desalted using an Amicon Ultra-15 centrifugal unit (NMWL 10,000, 

Millipore) and resuspended in 10 mM PO4
3- buffer pH 6 and stored at -80 oC until use. 

The sizing and analysis of HGLPT was performed using a LabChip® Protein 200 

plus kit (Agilent Technologies).  Briefly 1 μg each of purified HGLPT (molecular weight 

57039 Daltons), the constituent enzymes Pfs (molecular weight 29716 Daltons) and LuxS 

(molecular weight 24778 Daltons), from lab stock, were loaded per well in the chip and 
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the assay was conducted according to the manufacturer’s specifications (website: 

http://www.chem.agilent.com). 

 

Antibody nanofactory (Ab-NF) preparation 

Ab-NF was prepared by incubating HGLPT with an excess of the targeting antibody in 

phosphate buffer (molar ratio of HGLPT : antibody used was 1 : 4) to ensure that most 

HGLPT binds to the targeting antibody.  The samples were incubated at room 

temperature for atleast one hour prior to use. 

 

In vitro AI-2 synthesis and concentration estimation 

In vitro AI-2 was synthesized by incubating either HGLPT or Ab-NF (anti E. coli 

antibody) with the substrate SAH in phosphate buffer.  The reactions were carried out 

using varying concentrations of HGLPT (0.1 μM, 0.2 μM or 0.5 μM), Ab-NF (0.1 μM 

HGLPT + 0.4 μM Ab, 0.2 μM HGLPT + 0.8 μM Ab or 0.5 μM HGLPT + 2 μM Ab) and 

SAH (100 or 200 μM) for either 1 hour or 2 hours at 37 oC.  The effect of BSA on AI-2 

production was investigated by the addition of an excess of BSA (8 μM).  After reaction, 

the concentration of AI-2 generated was estimated by determining the concentration of 

homocysteine produced during the reaction. Homocysteine is a byproduct of the AI-2 

synthesis reaction produced in stoichiometrically equal amounts to AI-2 .  To estimate the 

concentration of homocysteine, the products of the AI-2 synthesis reaction were added to 

DTNB reagent (100 μM DTNB, 2.5 mM sodium acetate in 0.1 M Tris buffer, pH 8).  The 

reaction was carried out at room temperature for at least 15 minutes.  After the reaction, 

the absorbance at 412 nm (OD412) was measured and the concentration of homocysteine 
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calculated using molar extinction coefficient (13600 M-1 cm-1) of the reaction product 5-

thio-2-nitrobenzoic acid (TNB) 126.   

 

Fluorescence microscopy 

HGLPT was labeled with Texas Red-X and the antibody rabbit anti Escherichia coli was 

labeled with FITC as per the manufacturer’s specification (Invitrogen).  Ab-NF using the 

fluorescently labeled HGLPT and antibody were prepared as described earlier.  E. coli 

W3110 was grown under the culture conditions described previously (until an OD600 of 

0.4).  The cells were harvested and suspension of the cells in phosphate buffer was 

prepared.  Ab-NF, containing 0.1 μM HGLPT, 0.4 μM anti E. coli and 8 μM BSA were 

added to the cells at room temperature for 30 minutes (protected from light).  To separate 

unbound Ab-NF from the cells, the samples were spun in Centrisart I ultrafiltraton units 

(MWCO 300,000; Sartorius) which retains the cells and allows the Ab-NF to flow 

through.  The retained cells were resuspended in phosphate buffer and observed under a 

fluorescence microscope using a 40X objective (Olympus BX60).  As controls, cells were 

treated either with anti E. coli (+ BSA) only, HGLPT (+ BSA) only or left untreated.  

Images of the samples were taken using a Canon EOS D60 digital camera, a photo 

eyepiece 3.3X with either a Endow GFP longpass emission filter set (Chroma) for green 

fluorescence or a DsRed2 filter set (Chroma) for red fluorescence for an exposure time of 

3 seconds. 

 

Localized synthesis and delivery of AI-2 using antibody nanofactories 
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The target cells (E. coli LW7 pLW11 or S. typhimurium MET715) were pre-cultured 

overnight separately in LB medium at 37 oC and 250 rpm supplemented with the 

appropriate antibiotic (100 μg/mL ampicillin for E. coli LW7 and 100 μg/mL kanamycin 

for S. typhimurium MET715).  The overnight cultures were diluted into fresh LB medium 

supplemented with antibiotic (60 μg/mL ampicillin for E. coli LW7 and 100 μg/mL 

kanamycin for S. typhimurium MET715) and the samples were grown at 30 oC for 4 

hours at 250 rpm.  After 4 hours, the cells were collected by centrifuging at 10,000 xg for 

10 minutes and resuspended in 10mM phosphate buffer, pH 6.  The cells were contacted 

with either Ab-NF (0.1 μM HGLPT, 0.4 μM anti E. coli for E. coli LW7 samples or 0.4 

μM anti S. typhimurium for S. typhimurium samples and 8 μM BSA), HGLPT (0.1 μM 

HGLPT and 8 μM BSA) or left untreated for 30 minutes at room temperature.  SAH (0.2 

μM) was added to each sample and the samples were incubated at 37 oC for 2 hours to 

allow localized synthesis and delivery of in vitro AI-2 to the cells.  After the stated time, 

the samples were centrifuged for 5 min at 14,000 rpm.  The cell free supernatants were 

analyzed for their AI-2 concentration as described earlier and the cell pellets were 

analyzed to measure the AI-2 based response (β-galactosidase production).  The AI-2 

dependent specific β-galactosidase activity was measured as described in the literature 66. 

 

4.4 Results 

Expression, purification and analysis of HGLPT 

Plasmid pHGLPT (Figure 4-2a) overexpresses HGLPT upon induction of the production 

strain E. coli BL21 luxS-.  HGLPT contains Protein G derived from Streptococcus and 

the AI-2 synthesis enzymes Pfs and LuxS from E. coli.  The overexpressed protein is 
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purified and is analyzed for its size using LabChip®.  Figure 4-2b shows the results of the 

protein assay run using 1 μg of purified HGLPT, Pfs and LuxS run separately.  The gel 

shows bands at molecular weights of the enzyme that are in agreement with the molecular 

weights of the same theoretically predicted based on the amino acid sequences. HGLPT 

shows a band at 59.4 kDa (predicted 57.0 kDa), Pfs shows a band at 28.7 kDa (predicted 

29.7 kDa) and LuxS shows a band at 23.1 kDa (predicted 24.8 kDa) 
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Figure 4-2.  Construction of plasmid pHGLPT, expression and purification of HGLPT.  

a. Map of plasmid pHGLPT for expressing fusion protein HGLPT.  b. Analysis of 

HGLPT using LabChip®. HGLPT predicted molecular weight based on primary amino 

acid sequence is 57039 Da, that of Pfs is 29716 Da and that of LuxS is 24778 Da. 
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Comparing activities of Ab-NF and HGLPT 

Ab-NF of varying HGLPT concentrations (0.1, 0.2 and 0.5 μM, HGLPT:Ab molar ratio 

of 1:4) are prepared and the activities of Ab-NF and HGLPT are compared over a variety 

of reaction conditions.  Figure 4-3a shows that as the concentration of HGLPT (from 0.1 

– 0.5 μM) is increased, both in Ab-NF and in HGLPT samples, AI-2 production 

increases. Figure 4-3a also shows that AI-2 production increases with increased reaction 

times (from 1 hour to 2 hours).  AI-2 production is higher in the HGLPT samples than in 

the Ab-NF samples over all investigated concentrations (0.1, 0.2 and 0.5 μM HGLPT) 

and reaction times (1 hour and 2 hours) in the absence of BSA, which is commonly added 

to mixtures of proteins to block non-specific binding of proteins. Upon addition of BSA 

(8 μM), AI-2 production in Ab-NF is found to increase and is higher than that of HGLPT 

for the concentration (0.1 μM HGLPT) and times (1 hour and 2 hours) investigated 

(Figure 4-3b).  No significant effect of BSA on the AI-2 production in HGLPT samples is 

observed. 

 

Cell targeting with Ab-NF 

Ab-NF containing 0.1 μM HGLPT, 0.4 μM anti E. coli and 8 μM BSA is prepared using 

the Texas Red-X labeled HGLPT and FITC labeled anti E. coli.  The fluorescently 

labeled Ab-NF is added to a suspension of wild type E. coli (W3110) cells in phosphate 

buffer for 30 minutes.  The target cells are separated from the unbound Ab-NF and 

viewed under a fluorescence microscope.  Figure 4-4 shows photographs of wild type E. 

coli (no color) contacted with either Ab-NF (green antibody, red HGLPT), Ab only 

(green), HGLPT (red) or left untreated (no color).   
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Figure 4-3.  Comparing the AI-2 activity of HGLPT and Ab-NF containing equimolar 

amounts of HGLPT as function of  a. concentration and synthesis time and b.  BSA 

addition. 
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Figure 4-4.  Fluorescence microscopy images of E. coli wild type cells targeted by Ab-

NF, Ab only, HGLPT only or left untreated.  a. Image of E. coli cells targeted by Ab-NF 

shows co-localization of both green fluorescence (FITC labeled anti E. coli) and red 

fluorescence (Texas Red-X labeled HGLPT) when viewed using the GFP longpass 

emission filter set.  b. Image of E. coli cells targeted by Ab shows only green 

fluorescence using the GFP longpass emission filter set.  c. Image of E. coli cells targeted 

by HGLPT shows red fluorescence under the DsRed2 filter set (very little green 

fluorescence observed).  d. Image of E. coli cells left untreated shows low background 

levels of green fluorescence under the GFP filter set. 

a b 

c d 

5 μm 



www.manaraa.com

 

 91 
 

Cells contacted with Ab-NF show both green and red fluorescence (co-

localization of the both green and red within the same region) when viewed using the 

GFP filter set (Figure 4-4a).  Cells contacted with Ab only shows only green fluorescence 

(Figure 4-4b) while cells contacted with HGLPT showed very little fluorescence when 

viewed using the GFP filter set (data not shown) and red fluorescence when viewed under 

the DsRed filter set (Figure 4-4c).  Untreated cells showed little to no fluorescence when 

view both using the GFP filter (Figure 4-4d) and DsRed filter (data not shown). 

 

Effect of Ab-NF based localized synthesis and delivery of AI-2 on target cell 

response 

The effect of Ab-NF based AI-2 synthesis and delivery is investigated using reporter 

strains E. coli LW7 pLW11 and S. typhimurium MET715. E. coli is a luxS and lac double 

mutant and hence cannot produce its own AI-2 and β-galactosidase (the product of the lac 

gene).  E. coli LW7 pLW11 can produce β-galactosidase in response to added AI-2.  S. 

typhimurium MET715 is a luxS mutant and hence cannot produce its own AI-2 (S. 

typhimurium does not produce β-galactosidase).  S. typhimurium MET715 can also 

produce AI-2 dependent β-galactosidase. 

 E. coli LW7 pLW11 was grown and a suspension of the cells in buffer prepared 

as described in the methods section.  Ab-NF, containing 0.1 μM HGLPT, 0.4 μM anti E. 

coli and 8 μM BSA, is added to the cells and allowed to contact for 30 minutes.  Upon 

addition of SAH (0.2 mM), AI-2 is synthesized by Ab-NF at the E. coli cell surface.  The 

cells take up the AI-2 and produce AI-2 dependent β-galactosidase.  Figure 4-5a shows 

that the AI-2 delivered to the cells is higher in the cells targeted by Ab-NF (13.8 μM) 
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than in those targeted by HGLPT only (5 μM) or left untreated (3 μM).  The resulting 

cellular response (specific β-galactosidase activity, Figure 4-5b) is significantly higher in 

Ab-NF targeted cells (180.8 Miller units) as compared to HGLPT targeted cells (25.3 

Miller units) and untreated cells (22.1 Miller units).   

S. typhimurium MET715 was grown and a suspension of the cells in buffer 

prepared as described in the methods section.  Ab-NF, containing 0.1 μM HGLPT, 0.4 

μM anti S. typhimurium and 8 μM BSA, is added to the cells and allowed to contact for 

30 minutes.  Here HGLPT, which contains the E. coli AI-2 synthesis enzymes, is added 

to S. typhimurium cells.  When SAH (0.2 mM) is added, AI-2 is synthesized by Ab-NF at 

the S. typhimurium cell surface.  The cells take up the AI-2 and produce AI-2 dependent 

β-galactosidase.  Figure 4-6a shows that the AI-2 delivered to S. typhimurium is higher in 

the cells targeted by the E. coli Ab-NF (21 μM) than in those targeted by HGLPT only 

(7.9 μM) or left untreated (4.7 μM).  The resulting cellular response (specific β-

galactosidase activity, Figure 4-6b) is significantly higher in S. typhimurium cells 

targeted by E. coli antibody nanofactory (2042.5 Miller units) as compared to HGLPT 

targeted cells (663.7 Miller units) and untreated cells (403.7 Miller units).   
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Figure 4-5.  Effect of Ab-NF based localized synthesis and delivery of AI-2 on AI-2 

specific β-galactosidase production in targeted E. coli LW7 pLW11 cells.  a. AI-2 

concentrations delivered to cells targeted by Ab-NF, HGLPT and untreated cells.  b. AI-2 

dependent specific β-galactosidase activity in cells targeted by Ab-NF, HGLPT and 

untreated cells. 
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Figure 4-6.  Effect of Ab-NF based localized synthesis and delivery of AI-2 on AI-2 

specific β-galactosidase production in targeted S. typhimurium MET715 cells.  a. AI-2 

concentrations delivered to cells targeted by Ab-NF, HGLPT and untreated cells.  b. AI-2 

dependent specific β-galactosidase activity in cells targeted by Ab-NF, HGLPT and 

untreated cells. 
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4.5 Discussion 

In this work, we have presented the concept of an antibody nanofactory for the localized 

synthesis and delivery of AI-2 to bacterial cells (Figure 4-1a).  The nanofactories 

combine the specific targeting abilities of an antibody with the synthesis abilities of 

fusion protein HGLPT (Figure 4-1b).  To express HGLPT, plasmid pHGLPT was 

constructed (Figure 4-2a).  The purified protein was observed to have a molecular weight 

in agreement with that theoretically predicted by the primary amino acid sequence 

(Figure 4-2b).   

 Antibody nanofactories (Ab-NF) were formed by the self assembly of the 

targeting antibody (anti E. coli or anti S. typhimurium) and HGLPT via Protein G.  The 

activity of Ab-NF was compared to that of HGLPT over a range of synthesis conditions.  

For syntheses carried out in buffer, in the absence of BSA, HGLPT was observed to 

produce more AI-2 than Ab-NF (Figure 4-3a).  The addition of blocking agent BSA 

causes the activity of the Ab-NF to increase while that of HGLPT was not significantly 

altered (Figure 4-3b).  We believe that the addition of BSA stabilizes the Ab-NF complex 

and causes the AI-2 productivity of the same to increase.  We did not investigate the 

mechanism for Ab-NF stabilization in the presence of BSA in this work.  Ab-NF was 

found to selectively target E. coli wild type cells (Figure 4-4a).  Fluorescence microscopy 

showed co-localization of green fluorescence (FITC labeled anti E. coli) and red 

fluorescence (Texas Red-X labeled HGLPT) viewed under a GFP longpass emission 

filter.  Similar co-localization was not observed in cells targeted with anti E. coli (Figure 

4-4b), HGLPT (Figure 4-4c) and untreated (Figure 4-4d).  
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 Targeting E. coli LW7 cells with Ab-NF resulted in increased AI-2 synthesis 

(13.8 μM, Figure 4-5a) and AI-2 specific β-galactosidase production (180.8 Miller units, 

Figure 4-5b) as compared to cells targeted with HGLPT (5 μM, 25.3 Miller units) and 

untreated cells (3 μM AI-2, 22.1 Miller units).  The results indicate that the addition of 

antibody nanofactories significantly alter the natural progression of QS signaling in E. 

coli.  Targeting S. typhimurium MET715 with Ab-NF also resulted in increased AI-2 

production (21 μM, Figure 4-6a) and AI-2 specific β-galactosidase production (2042.5 

Miller units, Figure 4-6b) as compared to cells targeted with HGLPT (7.9 μM AI-2, 663.7 

Miller units) and untreated cells (4.7 μM AI-2, 403.7 Miller units).  The results indicate 

that S. typhimurium responds to AI-2 synthesized by E. coli enzymes in an Ab-NF and 

alters the natural progression of its AI-2 based QS response.   

 We believe our work is significant for the following reasons.  First, we have 

presented antibody nanofactories as a new technique for selectively delivering AI-2 to 

targeted bacteria.  Ab-NF is bio-inspired, self-assembled and bi-modular and is capable 

of altering the natural QS response in bacteria.  Selective delivery of AI-2 as a 

mechanism for tuning (turning up or down) bacterial response is particularly important in 

devising the next generation of antimicrobials based on altering QS based response.  

Finally, we believe that this technique of using antibody directed natural biosynthetic 

pathways in an antibody nanofactory can be used in other applications where the 

selective delivery of the product of the biosynthetic pathway ‘fine-tunes’ the response of 

the cells or tissue targeted.    
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Chapter 5:  Spatially-Selective Assembly and Manipulation of 
Quorum Sensing Bacteria in a BioMEMS Device using Antibody 
Nanofactories 

 

5.1 Abstract 

Biological microelectromechanical systems (bioMEMS) provide a unique platform to 

study and manipulate biological matter under the controlled conditions of MEMS 

devices.  In this work, a method to assemble and manipulate quorum sensing (QS) 

bacteria in a spatially-selective manner in a bioMEMS device is demonstrated.  QS is a 

phenomenon of bacterial communication via signaling autoinducers and has been shown 

to play a role in diverse, and sometimes undesirable, multicellular bacterial phenomena.  

The assembly technique involves construction of microchannels in a bioMEMS device 

consisting of patterned gold electrodes.  The amine-group containing biopolymer 

chitosan is electrodeposited onto the negatively biased electrode.  Antibody nanofactories 

comprising a fusion protein His-Protein G3-LuxS-Pfs-Tyr (HG3LPT) and a cell targeting 

antibody assembled together, are covalently conjugated onto the electrodeposited 

chitosan by activation of the C-terminal tyrosine tag (Tyr) of HG3LPT using the enzyme 

tyrosinase.  The assembled antibody nanofactories spatially capture targeted cells 

introduced into the microchannel.  As proof-of-concept of manipulation of the QS 

response of bacteria captured spatially in a bioMEMS device, the nanofactories are 

demonstrated to locally synthesize and deliver the ‘universal’ bacterial signaling 

molecule autoinducer-2 to the targeted cells, thereby altering their native response.  

Prospects for uncovering the underlying mechanisms of QS signaling using this spatially-
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selective method of capture and localized synthesis and delivery of signaling molecules 

via antibody nanofactories are envisioned.  

 

5.2 Introduction 

Biological microelectromechanical systems (bioMEMS) are a subset of 

microelectromechanical systems (MEMS) that involve the integration of biological 

matter or biological systems into MEMS 145-150.  In addition to providing the benefits of 

MEMS with respect to small device sizes, low reagent volumes, shorter reaction times 

and possibility for parallel processing, bioMEMS also provide a useful platform to study 

and manipulate the complexity of biological systems in the controlled environments of 

MEMS devices 146, 151-156.   

The study of bacterial communication is becoming increasingly important as 

many bacterial phenomena such as biofilm formation, pathogenicity, bioluminescence etc 

are a consequence of co-ordinated bacterial response 46, 56-60.  Bacteria communicate with 

each other through the production, secretion, sensing and uptake of small signaling 

molecules called autoinducers in a process known as quorum sensing (QS) 43, 44, 132, 133.  

QS has been implicated both in intra- as well as inter-species communication in bacteria 

44, 45.  Understanding the specific effects of these signaling autoinducers on co-ordinated 

bacterial response holds the key to elucidating the fundamental mechanisms at play in the 

diverse and seemingly unrelated bacterial phenomena.  BioMEMS provide unique 

opportunities to understand QS within their controlled environments. 

In this work, a technique to spatially capture and manipulate QS bacteria within a 

test area of a microchannel in a bioMEMS device is demonstrated.  Specifically, the QS 
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bacterium Escherichia coli will be spatially captured in the test area of the device and the 

response of the captured bacteria will be manipulated via locally synthesizing and 

delivering the signal molecule autoinducer-2 (AI-2).  In E. coli, AI-2 is synthesized from 

its precursor S-adenosylhomocysteine (SAH) via a two step enzymatic reaction involving 

the enzymes, S-adenosylhomocysteine nucleosidase (Pfs) and S-ribosylhomocysteinase 

(LuxS) 44, 66.  AI-2 based signaling has been observed in E. coli as well as in at least 70 

other bacterial species prompting AI-2 to be referred to as the universal bacterial 

signaling molecule 44, 71. 

The technique demonstrated here involves creation of a bioMEMS device and 

using electrodeposited chitosan and antibody nanofactories to spatially capture and 

manipulate bacteria in the device (Figure 5-1).  The bioMEMS device consists of 

microchannels (Figure 5-2a); each containing patterned gold electrodes (Figure 5-2b).  

The electrode that forms the test area of the bioMEMS device is functionalized with 

electrodeposited chitosan; an amine-group containing biopolymer with pH dependent 

solubility 157, 158.  When an electric current is imposed between two electrodes in the 

microchannel, chitosan electrodeposits from solution onto the negatively charged 

electrode on account of a high pH generated in the vicinity of the negative electrode 91, 92, 

159, 160.   

The antibody nanofactories are then assembled onto chitosan electrodeposited on 

the test area (negative electrode).  Antibody nanofactories are a subset of biological 

nanofactories 73, 74, 144, which are comprised of multiple functional modules and 

manipulate the response of cells they target by locally synthesizing and delivering 

molecules-of-interest (signal molecules, drugs etc) at the surface of the targeted cells.  
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Antibody nanofactories presented here are self assembled and bi-modular, i.e. they 

consist of two functional modules: an AI-2 synthesis module and a bacteria targeting 

module.   

 

 

 

 

 

Figure 5-1.  Scheme for spatially-selective assembly and manipulation of quorum 

sensing bacteria in a bioMEMS device using antibody nanofactories.  The biopolymer 

chitosan is electrodeposited onto a patterned gold electrode in the microchannel of the 

bioMEMS device.  Antibody nanofactories are assembled onto the chitosan, they capture 

targeted cells and alter their response by localized synthesis and delivery of AI-2. 
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Figure 5-2.  Perspectives of the bioMEMS device.  a. Photograph of the bioMEMS 

device consisting of 9 microchannels each containing six patterned gold electrodes.  b. 

Photograph of a microchannel showing the negative electrode (test area) and the positive 

electrode with dimensions.  c. Cross section of the microchannel showing a glass slide 

containing an overlaid patterned gold electrode, flanked by PDMS sidewalls.  These 

layers are sandwiched between two plexiglass slabs. 
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Fusion protein His-Protein G3-LuxS-Pfs-Tyr (HG3LPT, Figure 5-3a and b) which 

is the AI-2 synthesis module expresses the AI-2 synthesis enzymes Pfs and LuxS derived 

from E. coli and three Protein G units derived from group C and G Streptococcus 135, 136.  

The bacteria targeting module is an antibody.  Protein G binds to the Fc region of 

antibodies 135, 136.  Upon mixing of antibodies and HG3LPT in solution, the antibody 

nanofactories self assemble when HG3LPT binds to antibody at its Fc region (Figure 5-

3c).  The rationale for using 3 Protein G units is that it increases the amount of antibody 

bound by HG3LPT 143.  HG3LPT contains a tyrosine tag that consists of five tyrosine 

residues at its C-terminus.  In the presence of the enzyme tyrosinase, the tyrosine residues 

are activated and they generate reactive o-quinones that are capable of reacting with 

available primary amines thus covalently conjugating tyrosines to amines 94, 104, 131. 

The specific aims of this work is to create a plasmid (pHG3LPT) to express fusion 

protein HG3LPT, to spatially assemble the antibody nanofactories via tyrosinase on 

chitosan electrodeposited onto the negative electrode (test area) of the bioMEMS device, 

to spatially capture E. coli in the test area of the device and finally to demonstrate that 

localized synthesis and delivery of AI-2 to the captured cells can alter their native QS 

based response. 
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Figure 5-3.  Construction of plasmid pHG3LPT expressing fusion protein HG3LPT and 

components of an antibody nanofactory.  a. Plasmid map showing details of plasmid 

pHG3LPT.  b. Analysis of HG3LPT using LabChip®. HG3LPT predicted molecular 

weight based on primary amino acid sequence is 71463 Da.  c. Schematic of an antibody 

nanofactory comprising a cell targeting module and an AI-2 synthesis module. 
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5.3 Materials and Methods 

Chemicals 

Chitosan (medium molecular weight, average molecular weight 300,000 g/mol), 

tyrosinase (from mushroom), phosphate buffered saline tablets (10 mM phosphate buffer, 

2.7 mM KCl and 137 mM NaCl, pH 7.4), albumin from bovine serum (BSA), S-(5’-

deoxyadenosin-5’)-L-homocysteine (SAH) and 5,5’-Dithiobis (2-nitrobenzoic acid) 

(DTNB) were purchased from Sigma Aldrich.  Ampicillin sodium salt, kanamycin, Tris, 

dibasic sodium phosphate (Na2HPO4.7H2O), monobasic sodium phosphate 

(NaH2PO4.H2O), sodium acetate trihydrate (CH3COONa.3H2O), sodium hydroxide and 

hydrochloric acid were purchased from Fisher Scientific.  Fluoreporter FITC (excitation 

wavelength peak 494 nm and emission wavelength peak 518 nm) protein labeling kit was 

purchased from Invitrogen and non fat dry milk (blotter grade) was purchased from 

BioRad.  

 

Antibodies 

Polyclonal rabbit anti Escherichia coli was purchased from AbD Serotec and polyclonal 

rabbit anti Salmonella typhimurium was purchased from Abcam.  FITC labeling of anti 

Salmonella typhimurium antibody was performed as per the manufacturer’s specification 

(Invitrogen). 

 

Plasmid pHG3LPT construction 

Plasmid pTrcHis-G3-LuxS-Pfs-Tyr (pHG3LPT) expresses HG3LPT, the fusion protein 

containing the AI-2 synthesis enzymes Pfs and LuxS (from E. coli) and three repeats of 
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Protein G (from Streptococcus). To construct pHG3LPT, the forward and reverse 

oligonucleotide primers listed in table 5-1 were used to amplify the G3 sequence (617 bp) 

from plasmid pET-E73-G3 143.  The PCR reactions were carried out using AccuPrime 

Taq High Fidelity polymerase (Invitrogen).  The 617 bp fragment containing G3 was 

isolated and purified using the QIAquick gel extraction kit (Qiagen) and inserted into 

pCR 2.1-TOPO (Invitrogen).  The intermediate plasmid pCR-G3 (TA) was transformed 

into the strain E. coli TOP10 (Invitrogen).  The integrity of the intermediate construct 

was verified by sequencing the plasmid at the DNA core facility at the Center for 

Biosystems Research, University of Maryland Biotechnology Institute.  The fragment 

containing G3 was extracted by digesting pCR-G3 (TA) using the restriction 

endonucleases, NcoI and NheI (New England Biolab, NEB).  The gel purified fragment 

was inserted into the destination vector pHLPT 144, previously cut using NcoI and NheI, 

and ligated using the Quick ligation kit (NEB) generating the final plasmid pHG3LPT 

(6.21 kb).  The plasmid integrity was verified by sequencing at the DNA core facility at 

the Center for Biosystems Research, University of Maryland Biotechnology Institute.  

Once the correct sequence was verified, pHG3LPT transformed into the expression strain 

E. coli BL21 luxS- (a luxS knockout, table 5-1). 

 

Bacterial strains and growth conditions 

Table 5-1 lists the bacterial strains and plasmids used in this study.  All bacterial strains 

were grown in Luria-Bertani (LB) medium at 37 oC with vigorous shaking (250 rpm).  

The Luria-Bertani (LB) medium used for bacterial growth contains 5 g/L of yeast extract 

(Sigma), 10 g/L of Bacto tryptone (Difco) and 10 g/L NaCl (J. T. Baker).  
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Table 5-1.  List of bacterial strains, plasmids and primers used in this study. 
 

Strain, 
plasmid or 

primer 
Relevant genotype and/or property Reference 

Escherichia coli strains 
W3110 Wild type  Laboratory 

stock 
BL21 F’ ompT hsdSB (rB

-mB
-) gal dcm Laboratory 

stock 
BL21 luxS- F’ ompT hsdSB (rB

-mB
-) gal dcm ∆luxS :: Kanr  Laboratory 

stock 
MDAI2 W3110 ∆luxS :: Tcr  
TOP10 F- mcrA Δ(mrr-hsdRMS-mcrBC) φ80lacZΔM15 ΔlacX74 

deoR nupG recA1 araD139 Δ(ara-leu)7697 galE15 galK16 
rpsL(StrR) endA1 λ-  

Invitrogen 

Plasmids 
pHLPT pTrcHisC derivative, W3110 pfs+, luxS+, Ampr Fernandes 

and 
Bentley144 

pET-E72-
G3 

pET derivative, expressing fustion protein E72G3 Tanaka et 
al.143 

pCR-G3 
(TA) 

pCR 2.1-TOPO derivative, G3
+, Ampr This study 

pHG3LPT pTrcHisC derivative, Escherichia coli W3110 pfs+, luxS+, 
Streptococcus Protein G3

+, Ampr 
This study 

pFZY1 galK’-lacZYA transcriptional fusion vector, Ampr Koop et 
al.101 

pET200 Cloning vector containing T7 promoter, Ampr Invitrogen 
pCT5 pFZY1 derivative, lsr-t7RPol+, Ampr Laboratory 

stock 
pCT6 pFZY1 derivative, containing lsrR and lsrR promoter fused 

with t7RPol+, Ampr 
Laboratory 

stock 
pEFGFP pET200 derivative, gfp+, Ampr Laboratory 

stock 
pGFP pTrcHisB derivative, gfp+, Ampr Wu et al.97 

Oligonucleotide primers 
Name Sequence Relevant property 

C2-5’ 
5'- CCA TGG GGG GTT CTC ATC 
ATC ATC ATC ATC ATG TTA AGA 
TCC GCA TGA CA -3' 

Upstream primer for cloning 
G3 from pET-E72-G3, contains 
NcoI 

C2-3’ 5'- GCT AGC CAA GAT CTT CGG 
GTC CAT TTC CGT -3' 

Downstream primer for 
cloning G3 from pET-E72-G3, 
contains NheI 
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Antibiotic concentrations used for the different strains, was 100 μg/mL ampicillin 

for E. coli TOP10, 50 μg/mL ampicillin for E. coli BL21 luxS-, 50 μg/mL ampicillin and 

20 μg/mL kanamycin  for E. coli MDAI2 carrying plasmids pCT6 and pETGFP and E. 

coli W3110 carrying plasmids pCT5 and pETGFP. 

 

Expression, purification and analysis of HG3LPT 

E. coli BL21 luxS- pHG3LPT was cultured at 37 oC and 250 rpm in LB medium 

supplemented with ampicillin at a concentration of 50 μg/mL.  When the optical density 

(OD600) of the cell culture was between 0.4 - 0.6, IPTG was added to induce over 

expression of HG3LPT (final IPTG concentration used was 1 mM).  After a 6 hr 

induction period at the same culture conditions, the cells were harvested by centrifugation 

at 12,000 xg for 15 minutes at 4 oC.  The cells were stored at -20 oC or directly 

resuspended in PBS + 10 mM imidazole.  The resuspended cells were lysed by sonication 

using Sonic Dismembrator 550 (Fisher Scientific).  After sonication, the soluble cell 

extract was collected by centrifugation at 14,000 xg for 15 minutes at 4 oC, filtered using 

a 0.22 μm polyether sulfone, low protein binding filter (Millipore) and then loaded on a 

pre-equilibrated immobilized metal-ion affinity chromatography (IMAC) column 

(HiTrap Chelating HP, GE Healthcare Life Sciences).  After washing with varying 

amounts of phosphate buffer, sodium chloride and imidazole (Wash 1: 20 mM PO4
3-, 250 

mM NaCl and 10 mM imidazole; Wash 2: 20 mM PO4
3-, 250 mM NaCl and 50 mM 

imidazole), HG3LPT was eluted with 20 mM PO4
3-, 250 mM NaCl and 350 mM 

imidazole.  The protein was desalted using an Amicon Ultra-15 centrifugal unit (NMWL 
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10,000, Millipore) and resuspended in 10 mM PO4
3- buffer pH 6 and stored at -80 oC 

until use. 

The sizing and analysis of HG3LPT was performed using a LabChip® Protein 200 

plus kit (Agilent Technologies).  Briefly 1 μg of purified HG3LPT (molecular weight 

71463 Daltons) was loaded in the chip and the assay was conducted according to the 

manufacturer’s specifications (website: http://www.chem.agilent.com). 

 

BioMEMS device fabrication 

The bioMEMS device was fabricated as reported previously 131, 161.  Briefly, the device 

consists of 9 microchannels evenly distributed on a glass slide with six gold electrodes 

underneath each channel (Figure 5-2a).  Each gold electrode is 1 mm x 1 mm and with an 

in-channel area of 0.5 mm x 1 mm (Figure 5-2b).  The channel is 19 mm long and 150 

μm high. The channel volume above each electrode is 0.075 microliters.  The glass slide 

is placed over a layer of plexiglass (Figure 5-2c).  The sidewalls of the channel consist of 

polydimethylsiloxane (PDMS), molded using soft lithographic techniques described in 

the literature 162, 163.  The device is sealed with a top layer of PDMS.  Flow into and from 

the microchannel is through flexible polyethylene tubing.  

 

Chitosan electrodeposition 

A 0.5 % chitosan solution was prepared by adding chitosan flakes in de-ionized water, 

with HCl added dropwise to maintain pH 2, and mixing overnight. The pH was then 

adjusted to pH 5 by the dropwise addition of 1 M NaOH. The resulting chitosan solution 

was then filtered and stored at 4 °C.  To electrodeposit chitosan, the channel first was 
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prepared by rinsing with de-ionized water for atleast 10 minutes.  The chitosan solution 

was introduced into the channel and electrodeposited onto the negatively biased electrode 

(the test area) by applying a constant current density of 3 A/m2 for times ranging from 30 

seconds to 2 minutes.  After electrodeposition, the channel was rinsed with PBS to 

remove unbound chitosan. 

 

Spatially-selective assembly of antibody nanofactories  

The bioMEMS device containing chitosan electrodeposited onto test area (one out of the 

six electrodes in the channel) was prepared as described above.  To prevent non-specific 

adsorption of proteins in the channel, a blocking solution containing 5 % non fat milk in 

PBS was introduced into the channel at a flow rate of 1 μL/min for 2 hours.  After 

blocking, the channel was rinsed with PBS for 30 minutes at a flow rate of 5 μL/min. To 

attach HG3LPT onto chitosan, a solution containing 1 μM HG3LPT and 50 U/mL of the 

enzyme tyrosinase was introduced into the channel at a flow rate of 1 μL/min and 

allowed to react for a time period of 1 hour.  The channel was rinsed with PBS for 30 

minutes at 5 μL/min to remove unbound HG3LPT.  After rinsing, 1 μM FITC labeled anti 

S. typhimurium and 10 μM BSA was introduced at a flow rate of 1 μL/min for 1 hour.  

The channel was once again rinsed with PBS for 30 minutes at 5 μL/min to remove 

unbound antibody.  The fluorescence of the test area and channel background was 

observed under fluorescence microscope (Carl Zeiss model 310) and a UV source (Zeiss 

HBO 100) using a FITC filter (Chroma, excitation wavelength 480 nm, excitation 

wavelength 535 nm) to investigate assembly of the antibody nanofactories in the channel.  

Photographs were taken using a digital camera (Carl Zeiss AxioCam MRc5) using 0.5 – 2 
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second exposure times.  As a control, all the above steps were performed in another 

channel except the step involving the introduction of HG3LPT and tyrosinase into the 

channel. 

 

Spatial-selective capture of cells  

E. coli carrying plasmid pGFP was cultured and induced to overexpress green fluorescent 

protein (GFP) using culture conditions as described before.  The resultant fluorescent 

cells (on account of the overexpressed GFP) were collected by centrifuging at 10,000 xg 

for 5 minutes.  An antibody nanofactory solution was prepared by mixing 1 μM HG3LPT, 

2 μM anti Escherichia coli and 50 U/mL tyrosinase at room temperature for alteast 1 

hour.  After the said period, the nanofactory solution was introduced into the channel 

containing electrodeposited chitosan, previously treated with the blocking solution, at a 

flow rate of 1 μL/min and allowed to react for 2 hours.  After rinsing the channel with 

PBS for 30 min at 5 μL/min, a suspension of E. coli cells overexpressing GFP in PBS 

was introduced into the channel for 1 hour at 1 μL/min.  The channel was rinsed with 

PBS for 30 min at 5 μL/min to remove the unbound cells.  The fluorescence of the test 

area and channel background was observed under the fluorescence microscope under a 

Sapphire GFP/UV filter (Chroma, excitation wavelength 395 nm, emission wavelength 

510 nm) to determine spatial capture of cells. 

 

Synthesis of in vitro AI-2 by antibody nanofactories at the surface of the captured 

cells  
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E. coli MDAI-2 cells carrying plasmids pCT5 and pETGFP were spatially captured on 

the test area using the antibody nanofactories as described above.  1 mM SAH in 10 mM 

sodium phosphate buffer pH 6 was introduced into the channel at a flow rate of 0.11 

μL/min for 16 hours.  The nanofactories synthesized AI-2 in the vicinity of the cells.  To 

estimate the amount of AI-2 delivered to the cells, the effluent from the channel was 

collected and analyzed for its homocysteine concentration. Homocysteine is a byproduct 

of the AI-2 synthesis reaction produced in stoichiometrically equal amounts to AI-2 44.  

To estimate the concentration of homocysteine, the collected effluent was added to 

DTNB reagent (100 μM DTNB, 2.5 mM sodium acetate in 0.1 M Tris buffer, pH 8).  The 

reaction was carried out at room temperature for at least 15 minutes.  After the reaction, 

the absorbance at 412 nm (OD412) was measured and the concentration of homocysteine 

(equal to the amount of AI-2 delivered to the cells) calculated using molar extinction 

coefficient (13600 M-1 cm-1) of the reaction product 5-thio-2-nitrobenzoic acid (TNB) of 

the reaction of homocysteine with DTNB 126.  As control, all of the above steps were 

performed in a control channel except for the introduction of the nanofactory into the 

channel. 

 

Altering response of captured cells by localized synthesis and delivery of AI-2 by the 

antibody nanofactories 

E. coli W3110 cells carrying plasmids pCT6 and pETGFP were spatially captured on the 

test area using the antibody nanofactories as described above.  These cells produce their 

own AI-2 and carry plasmids that produce GFP in response to AI-2.  AI-2 was 

synthesized at the surface of the captured cells by introducing 1 mM SAH dissolved in 
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LB medium for 12 hours at a flow rate of 0.11 μL/min.  To monitor the response of the 

cells, the AI-2 based fluorescence (GFP expression) of the cells was observed as a 

function of time.  In the control experiment, all the above steps were repeated in a control 

channel replacing HG3LPT by HG3T, a fusion protein that does not contain AI-2 

synthesis enzymes Pfs and LuxS.  

 

5.4 Results 

Expression, purification and analysis of HG3LPT 

Plasmid pHG3LPT (Figure 5-3a) overexpresses HG3LPT upon induction of the 

production strain E. coli BL21 luxS-.  HG3LPT contains 3 repeats (G3) of Protein G 

derived from Streptococcus and the AI-2 synthesis enzymes Pfs and LuxS from E. coli 

(Figure 5-3c).  The overexpressed protein is purified and is analyzed for its size using 

LabChip®.  Figure 5-3b shows the results of the protein assay run using 1 μg of purified 

HG3LPT.  The assay shows a band at a molecular weight of 74.1 kDa, which is in 

agreement with the molecular weight predicted theoretically (71.463 kDa) based on the 

primary amino acid sequence of HG3LPT. 

  

Spatially-selective assembly of antibody nanofactories  

1 μM HG3LPT and 50 U/mL of the enzyme tyrosinase is introduced into the channel 

containing chitosan deposited on the test area.  After the reaction and subsequent 

introduction of FITC labeled anti S. typhimurium in the channel, antibody nanofactories 

assemble spatially on the test area.  Figure 5-4 shows photographs of the test areas of the 

experimental and control channels (no HG3LPT and tyrosinase) after assembly of the 
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nanofactories and the fluorescence image analysis of the electrode areas.  The average 

fluorescence observed in the test area of the experimental channel is 45.6 arbitrary units 

while that in the control channel is 14.1 arbitrary units.  The intensity ratio of the 

observed fluorescence of the test areas in the experimental and control channel is 3.2:1. 
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Figure 5-4.  Spatial assembly of antibody nanofactories in the test area of a microfluidics 

channel.  Photographs of the test area in an experimental channel and control channel 

(without HG3LPT and tyrosinase) and image analysis of the test areas. 



www.manaraa.com

 

 115 
 

Spatial-selective capture of cells 

The antibody nanofactories spatially assembled onto the test area of the experimental 

channel captures fluorescent cells (E. coli cells that have overexpressed GFP) introduced 

into the channel.  Figure 5-5a shows a photograph of the test area after cell capture and 

figure 5-5b shows the image analysis of the measured fluorescence.  The average 

fluorescence observed in the test area is 133.6 arbitrary units while that in the channel 

background is 61.4 arbitrary units.  The intensity ratio of the observed fluorescence of the 

test area to that observed in the channel background is 2.2:1.  

 

Synthesis of in vitro AI-2 by antibody nanofactories at the surface of the captured 

cells  

Antibody nanofactories synthesize AI-2 at the surface of E. coli MDAI2 cells captured in 

the test area of the experimental channel upon addition of SAH.  Figure 5-6a shows the 

concentration of homocysteine, and hence AI-2, detected in the effluent from the channel. 

As seen in Figure 5-6a, the AI-2 concentration detected in the experimental channel is 

found to be 17.1 μM while that in the control channel (no antibody nanofactories) is 4.6 

μM. 

 

Altering response of captured cells by localized synthesis and delivery of AI-2 by the 

antibody nanofactories 

E. coli W3110 carries plasmids pCT6 and pETGFP.  The cells produce their own AI-2 as 

well as GFP in response to AI-2 (on account of plasmids pCT6 and pETGFP).  The cells 

are spatially captured in the experimental channel test area via antibody nanofactories 
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while in the control channel test area; they are captured by antibodies attached to tyrosine 

tagged protein G (G3T).  Upon addition of SAH, the antibody nanofactories locally 

synthesize and deliver AI-2 to the surface of the captured cells in the test area of the 

experimental channel.  The control channel does not have the Pfs and LuxS and hence 

there is no synthesis of in vitro AI-2 there.  Since E. coli W3110 can produce its own AI-

2 and consequently AI-2 dependent GFP, the measured fluorescence of the test area in 

the control channel is the native response of the captured cells while that in the 

experimental channel is the altered response on account of the AI-2 produced by the 

antibody nanofactories.  Figure 5-6b shows the observed average fluorescence of the test 

areas in the experimental and control channels as a function of time since the introduction 

of the substrate SAH in LB medium into the channels.  The observed fluorescence is 

found to increase in both the experimental (from 28.6 arbitrary units at 40 min to 30.0 

arbitrary units at 2 hours and 40.9 arbitrary units at 11 hours) and control channels (from 

23.9 arbitrary units at 40 min to 24.5 arbitrary units at 2 hours and 32.3 arbitrary units at 

11 hours) as time progresses.  The fluorescence in the experimental channel is observed 

to be higher than that observed in the control channel at all times investigated. 
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Figure 5-5.  Spatially-selective capture of targeted E. coli cells that produce GFP in a test 

area using antibody nanofactories.  a. Photograph of the test area in the microchannel.  b. 

Image analysis of the test area and background in the microchannel.  
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Figure 5-6.  Effect of localized synthesis and delivery of AI-2 to targeted cells in a test 

area on cellular response.  a. AI-2 concentrations synthesized in the experimental channel 

(containing antibody nanofactories) and in the control channel (without antibody 

nanofactories.  b. AI-2 dependent cellular response (GFP production) in cells captured in 

the control channel (native response, without AI-2) and in the experimental channel 

(altered response, with AI-2). 
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5.5 Discussion 

In this work, we have presented a technique for the spatial capture and manipulation of 

quorum sensing bacteria (E. coli) in a test area of a bioMEMS device using 

electrodeposited chitosan and antibody nanofactories (Figure 5-1).  Chitosan is 

electrodeposited onto the test area (negatively biased electrode) on account of the high 

pH generated in the vicinity of the electrode.  The antibody nanofactories consist of 

targeting module, anti Escherichia coli, and the AI-2 synthesis module, fusion protein 

HG3LPT (Figure 5-3c) that self assemble when mixed in solution.  Plasmid pHG3LPT 

(Figure 5-3a) overexpresses HG3LPT upon induction.  The molecular weight of the 

purified HG3LPT was found to be in agreement with that theoretically predicted based on 

its amino acid sequence (Figure 5-3b).   

 The antibody nanofactories were spatially deposited onto the test area of the 

microchannel upon activation using the enzyme tyrosinase (Figure 5-4).  Tyrosinase 

activates the C-terminal pentatyrosine residues of HG3LPT generating reactive o-

quinones which react with the primary amine-groups of chitosan electrodeposited on the 

test area.  Spatial assembly of the nanofactories in the test area requires the presence of 

all the necessary components: electrodeposited chitosan, targeting antibody, fusion 

protein HG3LPT and activating enzyme tyrosinase.  The spatial assembly of the 

nanofactories, monitored by measuring the fluorescence of the FITC labeled antibody in 

the test area, was found to be higher when all components were simultaneously present 

(experimental channel, 45.6 arbitrary units) than when tyrosinase and HG3LPT was 

absent (control channel, 14.6 arbitrary units). 
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 The antibody nanofactories facilitated spatial assembly of targeted fluorescent E. 

coli cells in the test area via the targeting antibody (Figure 5-5).  The capture of cells, 

monitored by measuring the fluorescence produced by the cells, was found to be higher 

in the test area (133.6 arbitrary units, Figure 5-5b) than in the channel background (61.4 

arbitrary units).  

 Upon addition of substrate SAH, the antibody nanofactories synthesize AI-2 and 

deliver it in the vicinity of the capture E. coli cells (Figure 5-6a).  The AI-2 concentration 

synthesized in the experimental channel (containing HG3LPT, 17.1 μM) was found to be 

higher than that observed in the control channel (no HG3LPT, 4.6 μM) indicating that the 

assembled nanofactories retain their activity even after capture of the targeted cells in the 

test area.  In a proof-of-concept study, the localized synthesis and delivery of AI-2 via the 

nanofactories to targeted cells in the test area resulted in altering the native AI-2 based 

response (GFP production) of the cells (Figure 5-6b).  Use of the nanofactories resulted 

in increased AI-2 dependent GFP production (altered response) over all the times 

investigated as compared to controls (native response) indicating that the captured cells 

are capable of being manipulated using this technique.   

 The presented work is significant for the following reasons. First, a technique to 

spatially capture cells and biosynthetic pathway enzymes in a given test area of a 

microchannel is demonstrated.  The captured enzymes and cells retain their activity in the 

test area over the times investigated (12 hours).  Finally, the native response of the 

captured cells in the test area was demonstrated to be altered via localized synthesis and 

delivery using antibody nanofactories.  While only a modest increase in the native 

response (AI-2 based GFP production) of the captured cells was observed in this work 
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(Figure 5-6b), future studies conducted with optimized reaction conditions in the device 

should address this current limitation.  This will create a versatile platform to study QS 

based response, such as biofilm formation and cell attachment phenotypes, for various 

bacteria (by changing the targeting antibody) in a controllable manner within the 

bioMEMS device. 

 

 

  



www.manaraa.com

 

 122 
 

Chapter 6:  General Conclusions 

 

6.1 Results Summary  

In this dissertation, a biological nanofactory approach to targeted delivery was presented.  

The biological nanofactories, comprising multiple functional modules, effected targeted 

delivery by localized synthesis and delivery of the ‘universal’ quorum sensing signaling 

molecule autoinducer-2 at the surface of targeted bacteria.   

In chapter 2, the concept of a magnetic nanofactory was presented.  The magnetic 

nanofactories comprised enzymes of the AI-2 biosynthesis pathway, Pfs and LuxS, 

attached separately to chitosan functionalized magnetic nanoparticles (chitosan-mag) by 

activation of their terminal tyrosine pro-tags.  The magnetic nanofactories, shown to be 

able to capture cells and synthesize AI-2, were added to cultures of E. coli cells at various 

times along the growth of the bacteria.  The localized synthesis and delivery of AI-2 was 

found to alter the natural response of the targeted cells over all the times investigated.  

The magnetic nanofactories were also demonstrated to elicit a higher AI-2 dependent 

response in targeted cells than that caused by direct addition of an equivalent amount of 

free enzymes in solution.   

In chapter 3, the design of the AI-2 synthesis module was improved by the 

creation of a fusion protein HLPT that co-expressed both Pfs and LuxS.  The updated 

module was shown to have higher AI-2 activity than equimolar amounts of the 

constituent enzymes added separately over a wide range of reaction conditions 

investigated.  The synthesis module was assembled onto chitosan-mag nanoparticles via 
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adsorption and the resulting nanofactory was found to increase AI-2 dependent response 

in targeted cells as compared to the control (direct addition of AI-2).   

In chapter 4, the concept of an antibody nanofactory was presented.  The antibody 

nanofactories were self-assembled and made up of two functional modules: AI-2 

synthesis module (fusion enzyme HGLPT) and cell targeting module (anti bacteria 

antibody).  The antibody nanofactories self-assembled when the Protein G of HGLPT 

bound to the Fc region of the targeting antibody.  The antibody nanofactories were found 

to effectively target bacteria and shown to produce AI-2.  The localized synthesis and 

delivery of AI-2 via the antibody nanofactories was found to significantly alter the native 

response of both targeted E. coli and S. typhimurium (using the E. coli enzymes).   

In chapter 5, quorum sensing bacteria were spatially immobilized and 

manipulated in a bioMEMS device.  The immobilization technique involved creation of a 

patterned microdevice, electrodeposition of the chitosan onto the test area, assembly of 

the antibody nanofactory (fusion protein HG3LPT and targeting antibody) onto the test 

area by activation of the C-terminal tyrosine pro-tag of HG3LPT by tyrosinase.  The 

technique was demonstrated to facilitate spatially-selective capture of targeted E. coli 

bacteria on a test area of the bioMEMS device.  Manipulation of the captured bacteria by 

localized synthesis and delivery of AI-2 via the antibody nanofactories co-localized in the 

test area was shown to alter the native response of the captured cells. 

  

6.2 Broader Impact of the Work 

The work presented in this dissertation provides a fundamentally different way of 

approaching targeted delivery.  The results demonstrate that targeted delivery via 
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localized synthesis and delivery of signaling autoinducers are successful in altering the 

natural response of targeted bacteria.  In theory, this mode of delivery can be adapted to 

biological systems that are different and potentially more complex than the bacterial 

systems investigated here.  For example, in contemporary literature there is a 

considerable interest in creating methods that draw inspiration from the human body’s 

ability to self-medicate or self-heal.  In such approaches, molecular machinery is 

envisioned to be introduced into the body at a target site where it utilizes raw materials in 

the vicinity of the target site and converts it to a therapeutic compound or a (useful) 

substance required there.  While the biological nanofactories presented here are not 

currently capable of using pre-existing raw materials, they could potentially be adapted to 

do the same by careful design.  

 

6.3 Future Directions 

The results presented in this dissertation involve monitoring the AI-2 dependent 

production of model reporter proteins (β-galactosidase and green fluorescent protein) in 

mutant bacteria as indicative of cellular response.  The above studies can be adapted to 

study the response of wild type bacteria such as Escherichia coli W3110 and Salmonella 

typhimurium LT2.  In these studies, instead of monitoring a reporter protein production, 

one may study the effect of the localized synthesis and delivery of AI-2 on native gene 

expression such as AI-2 uptake and signal processing genes and other downstream genes 

as well as on phenotypic expression such as increased/decreased biofilm formation or 

increased/decreased toxin secretion.   
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 The magnetic nanofactories can be used for the spatial capture of cells in a 

bioMEMS device.  In these studies, the magnetic nanofactories will be added to cell 

cultures (e.g. E. coli or S. typhimurium) where they bind to the surface of the targeted 

cells.  In the presence of an external magnetic field, the nanofactories can be recovered 

along with the targeted cells.  The magnetic nanofactories along with the bound cells can 

be introduced into a microfluidics channel of a bioMEMS device.  Application of a 

magnetic field within a test area of the channel will enable immobilization of the 

magnetic nanofactories as well as bound cells within that test area.  The bound cells can 

be subjected to treatment within the test area.  After treatment, the cells can be released 

by removing the magnetic field.   

 By changing the targeting antibody, bacteria other than E. coli and S. typhimurium 

can be targeted.  These studies would be particularly useful in studying the AI-2 based 

response of bacteria such as Vibrio cholerae and Bacillus cereus.  AI-2 has been shown 

to decrease virulence in V. cholerae 46 and reduce biofilm formation in B. cereus 122.  In 

addition, the antibody nanofactories can be used to probe the AI-2 based response of 

bacteria not investigated thus far in the literature.   

 Another important study would be to demonstrate selective targeting and 

manipulation using antibody nanofactories of a single type of bacterium within a mixed 

culture of bacteria.  In these studies, the antibody nanofactories would target only one 

type of bacterium within the mixed culture and manipulate its response while leaving the 

other bacteria unaltered.  This would be particularly useful in situations that typically 

involve different types of bacteria such as oral bacteria, bacteria of the gut and biofilms 

involving different bacterial species.  These studies can be extended to co-cultures 
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involving eukaryotic cell lines such as Caco-2 epithelial cells and bacteria such as E. coli 

and V. cholerae so as to investigate the effect of the biological nanofactories on the 

ability of the these bacteria to adhere to the Caco-2 cells.  Such studies are important in 

the creation of an in vitro model of bacterial colonization and adhesion in the human gut.   

 Finally, in addition to the two types of biological nanofactories describe here, 

alternative nanofactories that add modules to or combine modules of the nanofactories 

described here can be devised for specific end applications.  For e.g. instead of the 

addition of substrate SAH externally, a storage module in the form a vesicle or capsule 

containing SAH can be added to the biological nanofactory so as to provide the raw 

material (by release from the storage module) for conversion by the enzymes of the 

nanofactory at the targeted site.          
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